GROUPS WHOSE PROPER SUBGROUPS OF INFINITE RANK ARE FINITE-BY-HYPERCENTRAL OR HYPERCENTRAL-BY-FINITE

被引:0
|
作者
A. DILMI
N. TRABELSI
机构
[1] University Ferhat Abbas Setif 1,Laboratory of Fundamental and Numerical Mathematics, Department of Mathematics
[2] Campus El Bez,undefined
来源
Acta Mathematica Hungarica | 2022年 / 167卷
关键词
finite-by-hypercentral; hypercentral-by-finite; locally (soluble-by-finite); rank; primary 20F19; secondary 20F99;
D O I
暂无
中图分类号
学科分类号
摘要
A group G is said to be of finite rank r if every finitely generated subgroup of G can be generated by at most r elements, and r is the least positive integer with a such property. If there is no such r, then the group G is said to be of infinite rank. In the present paper, it is proved that if G is an X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{X}$$\end{document}-group of infinite rank whose proper subgroups of infinite rank are finite-by-hypercentral (respectively, hypercentral-by-finite), then all proper subgroups of G are finite-by-hypercentral (respectively, hypercentral-by-finite), where X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{X}$$\end{document} is the class defined by N.S. Černikov as the closure of the class of periodic locally graded groups by the closure operations P´\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{\acute{P}}$$\end{document}, P`\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{\grave{P}}$$\end{document} and L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{L}$$\end{document}.
引用
收藏
页码:492 / 500
页数:8
相关论文
共 50 条
  • [21] On generalized U-hypercentral subgroups of a finite group
    Chen, Xiaoyu
    Guo, Wenbin
    Skiba, A. N.
    JOURNAL OF ALGEBRA, 2015, 442 : 190 - 201
  • [23] Hypercentral groups with all subgroups subnormal
    Martinelli, Alessandro
    JOURNAL OF GROUP THEORY, 2010, 13 (05) : 743 - 757
  • [24] LOCALLY FINITE RESOLUBLE PRODUCTS OF 2 HYPERCENTRAL GROUPS
    AMBERG, B
    ARCHIV DER MATHEMATIK, 1980, 35 (03) : 228 - 238
  • [25] Groups whose proper subgroups are Baer-by-Chernikov or Baer-by-(finite rank)
    Badis, Abdelhafid
    Trabelsi, Nadir
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2011, 9 (06): : 1344 - 1348
  • [26] GROUPS WHOSE PROPER SUBGROUPS ARE METAHAMILTONIAN-BY-FINITE
    de Giovanni, Francesco
    Trombetti, Marco
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (01) : 153 - 162
  • [27] Groups whose proper subgroups are finite-by-nilpotent
    Xu, MQ
    ARCHIV DER MATHEMATIK, 1996, 66 (05) : 353 - 359
  • [28] ON GROUPS ALL OF WHOSE PROPER SUBGROUPS ARE FINITE CYCLIC
    ADYAN, SI
    LYSENOK, IG
    MATHEMATICS OF THE USSR-IZVESTIYA, 1992, 39 (02): : 905 - 957
  • [29] On locally finite groups whose subgroups of infinite rank have some permutable property
    A. Ballester-Bolinches
    S. Camp-Mora
    M. R. Dixon
    R. Ialenti
    F. Spagnuolo
    Annali di Matematica Pura ed Applicata (1923 -), 2017, 196 : 1855 - 1862
  • [30] On locally finite groups whose subgroups of infinite rank have some permutable property
    Ballester-Bolinches, A.
    Camp-Mora, S.
    Dixon, M. R.
    Ialenti, R.
    Spagnuolo, F.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (05) : 1855 - 1862