Linear Data-Driven Economic MPC with

被引:0
|
作者
Xie, Yifan [1 ]
Berberich, Julian [1 ]
Allgoewer, Frank [1 ]
机构
[1] Univ Stuttgart, Inst Syst Theory & Automat Control, D-70550 Stuttgart, Germany
来源
IFAC PAPERSONLINE | 2023年 / 56卷 / 02期
关键词
Data-driven control; economic model predictive control; linear systems; MODEL-PREDICTIVE CONTROL;
D O I
10.1016/j.ifacol.2023.10.209
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a data-driven economic model predictive control (EMPC) scheme with generalized terminal constraint to control an unknown linear time-invariant system. Our scheme is based on the Fundamental Lemma to predict future system trajectories using a persistently exciting input-output trajectory. The control objective is to minimize an economic cost objective. By employing a generalized terminal constraint with artificial equilibrium, the scheme does not require prior knowledge of the optimal equilibrium. We prove that the asymptotic average performance of the closed-loop system can be made arbitrarily close to that of the optimal equilibrium. Moreover, we extend our results to the case of an unknown linear stage cost function, where the Fundamental Lemma is used to predict the stage cost directly. The effectiveness of the proposed scheme is shown by a numerical example. Copyright (c) 2023 The Authors.
引用
收藏
页码:5512 / 5517
页数:6
相关论文
共 50 条
  • [31] The Data-Driven Future of International Economic Law
    Alschner, Wolfgang
    Pauwelyn, Joost
    Puig, Sergio
    JOURNAL OF INTERNATIONAL ECONOMIC LAW, 2017, 20 (02) : 217 - 231
  • [32] Data-Driven Attack Detection for Linear Systems
    Krishnan, Vishaal
    Pasqualetti, Fabio
    IEEE CONTROL SYSTEMS LETTERS, 2021, 5 (02): : 671 - 676
  • [33] Data-Driven Positive Stabilization of Linear Systems
    Shafai, Bahram
    Moradmand, Anahita
    Siami, Milad
    2022 8TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT'22), 2022, : 1031 - 1036
  • [34] Data-Driven Abstractions for Verification of Linear Systems
    Coppola, Rudi
    Peruffo, Andrea
    Mazo Jr, Manuel
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 2737 - 2742
  • [35] DATA-DRIVEN BALANCING OF LINEAR DYNAMICAL SYSTEMS
    Gosea, Ion Victor
    Gugercin, Serkan
    Beattie, Christopher
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (01): : A554 - A582
  • [36] On the Robustness of Data-Driven Controllers for Linear Systems
    Anguluri, Rajasekhar
    Al Makdah, Abed AlRahman
    Katewa, Vaibhav
    Pasqualetti, Fabio
    LEARNING FOR DYNAMICS AND CONTROL, VOL 120, 2020, 120 : 404 - 412
  • [37] Linear MPC based on data-driven Artificial Neural Networks for large-scale nonlinear distributed parameter systems
    Xie, Weiguo
    Bonis, Ioannis
    Theodoropoulos, Constantinos
    22 EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2012, 30 : 1212 - 1216
  • [38] Robust MPC with data-driven demand forecasting for frequency regulation with heat pumps
    Bunning, Felix
    Warrington, Joseph
    Heer, Philipp
    Smith, Roy S.
    Lygeros, John
    CONTROL ENGINEERING PRACTICE, 2022, 122
  • [39] Data-driven polynomial MPC and application to blood glucose regulation in a diabetic patient
    Novara, Carlo
    Rabbone, Ivana
    Tinti, Davide
    2018 EUROPEAN CONTROL CONFERENCE (ECC), 2018, : 1722 - 1727
  • [40] Data-Driven Neural Predictors-Based Robust MPC for Power Converters
    Liu, Xing
    Qiu, Lin
    Rodriguez, Jose
    Wu, Wenjie
    Ma, Jien
    Peng, Zhouhua
    Wang, Dan
    Fang, Youtong
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2022, 37 (10) : 11650 - 11661