Linear Data-Driven Economic MPC with

被引:0
|
作者
Xie, Yifan [1 ]
Berberich, Julian [1 ]
Allgoewer, Frank [1 ]
机构
[1] Univ Stuttgart, Inst Syst Theory & Automat Control, D-70550 Stuttgart, Germany
来源
IFAC PAPERSONLINE | 2023年 / 56卷 / 02期
关键词
Data-driven control; economic model predictive control; linear systems; MODEL-PREDICTIVE CONTROL;
D O I
10.1016/j.ifacol.2023.10.209
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a data-driven economic model predictive control (EMPC) scheme with generalized terminal constraint to control an unknown linear time-invariant system. Our scheme is based on the Fundamental Lemma to predict future system trajectories using a persistently exciting input-output trajectory. The control objective is to minimize an economic cost objective. By employing a generalized terminal constraint with artificial equilibrium, the scheme does not require prior knowledge of the optimal equilibrium. We prove that the asymptotic average performance of the closed-loop system can be made arbitrarily close to that of the optimal equilibrium. Moreover, we extend our results to the case of an unknown linear stage cost function, where the Fundamental Lemma is used to predict the stage cost directly. The effectiveness of the proposed scheme is shown by a numerical example. Copyright (c) 2023 The Authors.
引用
收藏
页码:5512 / 5517
页数:6
相关论文
共 50 条
  • [21] DRO-MPC-based data-driven approach to real-time economic dispatch for islanded microgrids
    Lyu, Cheng
    Jia, Youwei
    Xu, Zhao
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2020, 14 (24) : 5704 - 5711
  • [22] Willems' Fundamental Lemma for Linear Descriptor Systems and Its Use for Data-Driven Output-Feedback MPC
    Schmitz, Philipp
    Faulwasser, Timm
    Worthmann, Karl
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 2443 - 2448
  • [23] Data-Driven Linear-Time-Variant MPC Method for Voltage and Power Regulation in Active Distribution Networks
    Li, Siyun
    Wu, Wenchuan
    IEEE TRANSACTIONS ON SMART GRID, 2024, 15 (03) : 2625 - 2638
  • [24] Data-driven MPC of descriptor systems: A case study for power networks
    Schmitz, Philipp
    Engelmann, Alexander
    Faulwasser, Timm
    Worthmann, Karl
    IFAC PAPERSONLINE, 2022, 55 (30): : 359 - 364
  • [25] Data-driven Nonlinear MPC using Dynamic Response Surface Methodology
    Pelagagge, Federico
    Georgakis, Christos
    Pannocchia, Gabriele
    IFAC PAPERSONLINE, 2021, 54 (06): : 272 - 277
  • [26] Data-Driven Predictive Control and MPC: Do we achieve optimality?
    Anand, A. S.
    Sawant, S.
    Reinhardt, D.
    Gros, S.
    IFAC PAPERSONLINE, 2024, 58 (15): : 73 - 78
  • [27] Highly Parallelized Data-driven MPC for Minimal Intervention Shared Control
    Broad, Alexander
    Murphey, Todd
    Argall, Brenna
    ROBOTICS: SCIENCE AND SYSTEMS XV, 2019,
  • [28] Performance-Oriented Model Learning for Data-Driven MPC Design
    Piga, Dario
    Forgione, Marco
    Formentin, Simone
    Bemporad, Alberto
    IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (03): : 577 - 582
  • [29] Lean NOx Trap Regeneration Control: A data-driven MPC Approach
    Karimshoushtari, Milad
    Novara, Carlo
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [30] A Customisable Longitudinal Controller of Autonomous Vehicle using Data-driven MPC
    Rokonuzzaman, Mohammad
    Mohajer, Navid
    Mohamed, Shady
    Nahavandi, Saeid
    2021 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2021, : 1367 - 1373