Using Boolean Satisfiability for Exact Shuttling in Trapped-Ion Quantum Computers

被引:2
|
作者
Schoenberger, Daniel [1 ]
Hillmich, Stefan [2 ]
Brandl, Matthias [3 ]
Wille, Robert [1 ,2 ]
机构
[1] Tech Univ Munich, Chair Design Automat, Munich, Germany
[2] Software Competence Ctr Hagenberg GmbH, Hagenberg, Austria
[3] Infineon Technol AG, Neubiberg, Germany
关键词
quantum computing; trapped-ions; shuttling;
D O I
10.1109/ASP-DAC58780.2024.10473902
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Trapped ions are a promising technology for building scalable quantum computers. Not only can they provide a high qubit quality, but they also enable modular architectures, referred to as Quantum Charge Coupled Device (QCCD) architecture. Within these devices, ions can be shuttled (moved) throughout the trap and through different dedicated zones, e.g., a memory zone for storage and a processing zone for the actual computation. However, this movement incurs a cost in terms of required time steps, which increases the probability of decoherence, and, thus, should be minimized. In this paper, we propose a formalization of the possible movements in ion traps via Boolean satisfiability. This formalization allows for determining the minimal number of time steps needed for a given quantum algorithm and device architecture, hence reducing the decoherence probability. An empirical evaluation confirms that-using the proposed approach-minimal results (i.e., the lower bound) can be determined for the first time. An open-source implementation of the proposed approach is publicly available at https://github.com/cda-tum/mqt-ion-shuttler.
引用
收藏
页码:127 / 133
页数:7
相关论文
共 50 条
  • [41] Entangling gates for trapped-ion quantum computation and quantum simulation
    Cai, Zhengyang
    Luan, Chun -Yang
    Ou, Lingfeng
    Tu, Hengchao
    Yin, Zihan
    Zhang, Jing -Ning
    Kim, Kihwan
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2023, 82 (09) : 882 - 900
  • [42] Robust Quantum Memory in a Trapped-Ion Quantum Network Node
    Drmota, P.
    Main, D.
    Nadlinger, D. P.
    Nichol, B. C.
    Weber, M. A.
    Ainley, E. M.
    Agrawal, A.
    Srinivas, R.
    Araneda, G.
    Ballance, C. J.
    Lucas, D. M.
    PHYSICAL REVIEW LETTERS, 2023, 130 (09)
  • [43] Pulse optimization for high-precision motional-mode characterization in trapped-ion quantum computers
    Liang, Qiyao
    Kang, Mingyu
    Li, Ming
    Nam, Yunseong
    arXiv, 2023,
  • [44] Strategies for a practical advantage of fault-tolerant circuit design in noisy trapped-ion quantum computers
    Heussen, Sascha
    Postler, Lukas
    Rispler, Manuel
    Pogorelov, Ivan
    Marciniak, Christian D.
    Monz, Thomas
    Schindler, Philipp
    Mueller, Markus
    PHYSICAL REVIEW A, 2023, 107 (04)
  • [45] Pulse optimization for high-precision motional-mode characterization in trapped-ion quantum computers
    Liang, Qiyao
    Kang, Mingyu
    Li, Ming
    Nam, Yunseong
    QUANTUM SCIENCE AND TECHNOLOGY, 2024, 9 (03)
  • [46] Reversible Measurement on Quantum States of Trapped-Ion Qubits
    徐酉阳
    周飞
    Communications in Theoretical Physics, 2010, 53 (03) : 469 - 472
  • [47] Control of trapped-ion quantum states with optical pulses
    Rangan, C
    Bloch, AM
    Monroe, C
    Bucksbaum, PH
    PHYSICAL REVIEW LETTERS, 2004, 92 (11) : 113004 - 1
  • [48] Fast quantum logic gates with trapped-ion qubits
    V. M. Schäfer
    C. J. Ballance
    K. Thirumalai
    L. J. Stephenson
    T. G. Ballance
    A. M. Steane
    D. M. Lucas
    Nature, 2018, 555 : 75 - 78
  • [49] Simple experimental methods for trapped-ion quantum processors
    Stevens, D
    Brochard, J
    Steane, AM
    PHYSICAL REVIEW A, 1998, 58 (04): : 2750 - 2759
  • [50] Nuclear spin qubits in a trapped-ion quantum computer
    Feng, M.
    Xu, Y. Y.
    Zhou, F.
    Suter, D.
    PHYSICAL REVIEW A, 2009, 79 (05):