Using Boolean Satisfiability for Exact Shuttling in Trapped-Ion Quantum Computers

被引:2
|
作者
Schoenberger, Daniel [1 ]
Hillmich, Stefan [2 ]
Brandl, Matthias [3 ]
Wille, Robert [1 ,2 ]
机构
[1] Tech Univ Munich, Chair Design Automat, Munich, Germany
[2] Software Competence Ctr Hagenberg GmbH, Hagenberg, Austria
[3] Infineon Technol AG, Neubiberg, Germany
关键词
quantum computing; trapped-ions; shuttling;
D O I
10.1109/ASP-DAC58780.2024.10473902
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Trapped ions are a promising technology for building scalable quantum computers. Not only can they provide a high qubit quality, but they also enable modular architectures, referred to as Quantum Charge Coupled Device (QCCD) architecture. Within these devices, ions can be shuttled (moved) throughout the trap and through different dedicated zones, e.g., a memory zone for storage and a processing zone for the actual computation. However, this movement incurs a cost in terms of required time steps, which increases the probability of decoherence, and, thus, should be minimized. In this paper, we propose a formalization of the possible movements in ion traps via Boolean satisfiability. This formalization allows for determining the minimal number of time steps needed for a given quantum algorithm and device architecture, hence reducing the decoherence probability. An empirical evaluation confirms that-using the proposed approach-minimal results (i.e., the lower bound) can be determined for the first time. An open-source implementation of the proposed approach is publicly available at https://github.com/cda-tum/mqt-ion-shuttler.
引用
收藏
页码:127 / 133
页数:7
相关论文
共 50 条
  • [31] Orbital-optimized pair-correlated electron simulations on trapped-ion quantum computers
    Zhao, Luning
    Goings, Joshua
    Shin, Kyujin
    Kyoung, Woomin
    Fuks, Johanna I.
    Rhee, June-Koo Kevin
    Rhee, Young Min
    Wright, Kenneth
    Nguyen, Jason
    Kim, Jungsang
    Johri, Sonika
    NPJ QUANTUM INFORMATION, 2023, 9 (01)
  • [32] Orbital-optimized pair-correlated electron simulations on trapped-ion quantum computers
    Luning Zhao
    Joshua Goings
    Kyujin Shin
    Woomin Kyoung
    Johanna I. Fuks
    June-Koo Kevin Rhee
    Young Min Rhee
    Kenneth Wright
    Jason Nguyen
    Jungsang Kim
    Sonika Johri
    npj Quantum Information, 9
  • [33] Trapped-ion based nanoscale quantum sensing
    Yoo, Jieun
    Kim, Hyunsoo
    Kim, Hyerin
    Kim, Yeongseo
    Choi, Taeyoung
    NANO CONVERGENCE, 2025, 12 (01):
  • [34] Trapped-ion antennae for the transmission of quantum information
    Harlander, M.
    Lechner, R.
    Brownnutt, M.
    Blatt, R.
    Haensel, W.
    NATURE, 2011, 471 (7337) : 200 - 203
  • [35] Quantum synchronization of a single trapped-ion qubit
    Zhang, Liyun
    Wang, Zhao
    Wang, Yucheng
    Zhang, Junhua
    Wu, Zhigang
    Jie, Jianwen
    Lu, Yao
    PHYSICAL REVIEW RESEARCH, 2023, 5 (03):
  • [36] Trapped-ion quantum computing: Progress and challenges
    Bruzewicz, Colin D.
    Chiaverini, John
    McConnell, Robert
    Sage, Jeremy M.
    APPLIED PHYSICS REVIEWS, 2019, 6 (02)
  • [37] Multispecies Trapped-Ion Node for Quantum Networking
    Inlek, I. V.
    Crocker, C.
    Lichtman, M.
    Sosnova, K.
    Monroe, C.
    PHYSICAL REVIEW LETTERS, 2017, 118 (25)
  • [38] Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits
    Ballance, C. J.
    Harty, T. P.
    Linke, N. M.
    Sepiol, M. A.
    Lucas, D. M.
    PHYSICAL REVIEW LETTERS, 2016, 117 (06)
  • [39] Quantum computer using a trapped-ion spin molecule and microwave radiation
    Mc Hugh, D
    Twamley, J
    PHYSICAL REVIEW A, 2005, 71 (01):
  • [40] Progress of quantum entanglement in a trapped-ion based quantum computer
    Yum, Dahyun
    Choi, Taeyoung
    CURRENT APPLIED PHYSICS, 2022, 41 : 163 - 177