Using Boolean Satisfiability for Exact Shuttling in Trapped-Ion Quantum Computers

被引:2
|
作者
Schoenberger, Daniel [1 ]
Hillmich, Stefan [2 ]
Brandl, Matthias [3 ]
Wille, Robert [1 ,2 ]
机构
[1] Tech Univ Munich, Chair Design Automat, Munich, Germany
[2] Software Competence Ctr Hagenberg GmbH, Hagenberg, Austria
[3] Infineon Technol AG, Neubiberg, Germany
关键词
quantum computing; trapped-ions; shuttling;
D O I
10.1109/ASP-DAC58780.2024.10473902
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Trapped ions are a promising technology for building scalable quantum computers. Not only can they provide a high qubit quality, but they also enable modular architectures, referred to as Quantum Charge Coupled Device (QCCD) architecture. Within these devices, ions can be shuttled (moved) throughout the trap and through different dedicated zones, e.g., a memory zone for storage and a processing zone for the actual computation. However, this movement incurs a cost in terms of required time steps, which increases the probability of decoherence, and, thus, should be minimized. In this paper, we propose a formalization of the possible movements in ion traps via Boolean satisfiability. This formalization allows for determining the minimal number of time steps needed for a given quantum algorithm and device architecture, hence reducing the decoherence probability. An empirical evaluation confirms that-using the proposed approach-minimal results (i.e., the lower bound) can be determined for the first time. An open-source implementation of the proposed approach is publicly available at https://github.com/cda-tum/mqt-ion-shuttler.
引用
收藏
页码:127 / 133
页数:7
相关论文
共 50 条
  • [21] Proposal for Trapped-Ion Quantum Memristor
    Stremoukhov, Sergey
    Forsh, Pavel
    Khabarova, Ksenia
    Kolachevsky, Nikolay
    ENTROPY, 2023, 25 (08)
  • [22] Progress in Trapped-Ion Quantum Simulation
    Foss-Feig, Michael
    Pagano, Guido
    Potter, Andrew C.
    Yao, Norman Y.
    ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, 2025, 16 : 145 - 172
  • [23] A small trapped-ion quantum register
    Kielpinski, D
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2003, 5 (03) : R121 - R135
  • [24] Muzzle the Shuttle: Efficient Compilation for Multi-Trap Trapped-Ion Quantum Computers
    Saki, Abdullah Ash
    Topaloglu, Rasit Onur
    Ghosh, Swaroop
    PROCEEDINGS OF THE 2022 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2022), 2022, : 322 - 327
  • [25] Exact Template Matching Using Boolean Satisfiability
    Abdessaied, Nabila
    Soeken, Mathias
    Wille, Robert
    Drechsler, Rolf
    2013 IEEE 43RD INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC (ISMVL 2013), 2013, : 328 - 333
  • [26] Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator
    Hempel, Cornelius
    Maier, Christine
    Romero, Jonathan
    McClean, Jarrod
    Monz, Thomas
    Shen, Heng
    Jurcevic, Petar
    Lanyon, Ben P.
    Love, Peter
    Babbush, Ryan
    Aspuru-Guzik, Alan
    Blatt, Rainer
    Roos, Christian F.
    PHYSICAL REVIEW X, 2018, 8 (03):
  • [27] Efficient quantum programming using EASE gates on a trapped-ion quantum computer
    Grzesiak, Nikodem
    Maksymov, Andrii
    Niroula, Pradeep
    Nam, Yunseong
    QUANTUM, 2022, 6
  • [28] Trapped-ion antennae for the transmission of quantum information
    M. Harlander
    R. Lechner
    M. Brownnutt
    R. Blatt
    W. Hänsel
    Nature, 2011, 471 : 200 - 203
  • [29] Technologies for trapped-ion quantum information systems
    Eltony, Amira M.
    Gangloff, Dorian
    Shi, Molu
    Bylinskii, Alexei
    Vuletic, Vladan
    Chuang, Isaac L.
    QUANTUM INFORMATION PROCESSING, 2016, 15 (12) : 5351 - 5383
  • [30] Probabilistic eigensolver with a trapped-ion quantum processor
    Zhang, Jing-Ning
    Arrazola, Inigo
    Casanova, Jorge
    Lamata, Lucas
    Kim, Kihwan
    Solano, Enrique
    PHYSICAL REVIEW A, 2020, 101 (05)