GLOBAL STABILITY OF REACTION-DIFFUSION EQUATIONS WITH FRACTIONAL LAPLACIAN OPERATOR AND APPLICATIONS IN BIOLOGY

被引:0
|
作者
El Hassani, Abdelaziz [1 ]
Hattaf, Khalid [1 ,2 ]
Achtaich, Naceur [1 ]
机构
[1] Hassan II Univ Casablanca, Fac Sci Ben MSick, Lab Anal Modeling & Simulat LAMS, POB 7955 Sidi Othman, Casablanca, Morocco
[2] Ctr Reg Metiers Educ & Format CRMEF, Equipe Rech Modelisat & Enseignement Math ERMEM, Casablanca, Morocco
关键词
fractional diffusion; biological systems; asymptotic stability; Lyapunov functional; EPIDEMIC MODEL; HBV MODEL; DYNAMICS;
D O I
10.28919/cmbn/7485
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The main objective of this paper is to develop an efficient method to establish the global stability of some reaction-diffusion equations with fractional Laplacian operator. This method is based on Lyapunov functionals for ordinary differential equations (ODEs). A classical case of such types of fractional spacial diffusion equations is rigorously studied. Moreover, the developed method is applied to some biological systems arising from epidemiology and cancerology.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Global stability for reaction-diffusion equations in biology
    Hattaf, Khalid
    Yousfi, Noura
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (08) : 1488 - 1497
  • [2] RATIONAL APPROXIMATION TO THE FRACTIONAL LAPLACIAN OPERATOR IN REACTION-DIFFUSION PROBLEMS
    Aceto, Lidia
    Novati, Paolo
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (01): : A214 - A228
  • [3] Reaction-diffusion equations for the infinity Laplacian
    Diehl, Nicolau M. L.
    Teymurazyan, Rafayel
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 199
  • [4] Fractional reaction-diffusion equations
    Saxena, R. K.
    Mathai, A. M.
    Haubold, H. J.
    ASTROPHYSICS AND SPACE SCIENCE, 2006, 305 (03) : 289 - 296
  • [5] Fractional Reaction-Diffusion Equations
    R. K. Saxena
    A. M. Mathai
    H. J. Haubold
    Astrophysics and Space Science, 2006, 305 : 289 - 296
  • [6] Analysis of differential equations involving Caputo-Fabrizio fractional operator and its applications to reaction-diffusion equations
    Shaikh, Amjad
    Tassaddiq, Asifa
    Nisar, Kottakkaran Sooppy
    Baleanu, Dumitru
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
  • [7] GLOBAL EXISTENCE FOR VECTOR VALUED FRACTIONAL REACTION-DIFFUSION EQUATIONS
    Besteiro, Agustin
    Rial, Diego
    PUBLICACIONS MATEMATIQUES, 2021, 65 (02) : 653 - 680
  • [8] Singular Limits for Reaction-Diffusion Equations with Fractional Laplacian and Local or Nonlocal Nonlinearity
    Meleard, Sylvie
    Mirrahimi, Sepideh
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2015, 40 (05) : 957 - 993
  • [9] Strong Convergence of Solutions and Attractors for Reaction-Diffusion Equations Governed by a Fractional Laplacian
    Jiaohui Xu
    Tomás Caraballo
    José Valero
    Applied Mathematics & Optimization, 2025, 91 (2)
  • [10] ON THE SOLUTIONS OF FRACTIONAL REACTION-DIFFUSION EQUATIONS
    Singh, Jagdev
    Kumar, Devendra
    Rathore, Sushila
    MATEMATICHE, 2013, 68 (01): : 23 - 32