A Benchmark of Cryo-CMOS Embedded SRAM/DRAMs in 40-nm CMOS

被引:4
|
作者
Damsteegt, Rob A. [1 ,2 ]
Overwater, Ramon W. J. [1 ,2 ]
Babaie, Masoud [2 ,3 ]
Sebastiano, Fabio [1 ,2 ]
机构
[1] Delft Univ Technol, Dept Quantum & Comp Engn, NL-2628 CD Delft, Netherlands
[2] QuTech, NL-2628CJ Delft, Netherlands
[3] Delft Univ Technol, Dept Microelect, NL-2628 CD Delft, Netherlands
关键词
Cryogenic CMOS (cryo-CMOS); DRAM; eDRAM; memory; quantum computing; SRAM; LOW-TEMPERATURE; DRAM; OPERATION; CELL; CIRCUITS; DESIGN; RAM;
D O I
10.1109/JSSC.2024.3385696
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The interface electronics needed for quantum processors require cryogenic CMOS (cryo-CMOS) embedded digital memories covering a wide range of specifications. To identify the optimum architecture for each specific application, this article presents a benchmark from room temperature (RT) down to 4.2 K of custom SRAMs/DRAMs in the same 40-nm CMOS process. To deal with the significant variations in device parameters at cryogenic temperatures, such as the increased threshold voltage, lower subthreshold leakage, and increased variability, the feasibility of different memories at cryogenic temperature is assessed and specific guidelines for cryogenic memory design are drafted. Unlike at RT, the 2T low-threshold-voltage (LVT) DRAM at 4.2 K is up to 2x more power efficient than both SRAMs for any access rate above 75 kHz since the lower leakage increases the retention time by 40,000 x , thus sharply cutting on the refresh power and showing the potential of cryo-CMOS DRAMs in cryogenic applications.
引用
收藏
页码:2042 / 2054
页数:13
相关论文
共 50 条
  • [11] Hot Carrier Degradation in Cryo-CMOS
    Chakraborty, W.
    Sharma, U.
    Datta, S.
    Mahapatra, S.
    2020 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM (IRPS), 2020,
  • [12] The role of cryo-CMOS in quantum computers
    Charbon, Edoardo
    2019 IEEE 8TH INTERNATIONAL WORKSHOP ON ADVANCES IN SENSORS AND INTERFACES (IWASI), 2019, : 181 - 181
  • [13] Millimeter-Wave Amplifiers in 40-nm CMOS
    Wang, Huei
    Hsiao, Yuan-Hung
    Yeh, Kuang-Sheng
    Chou, Yu-Ting
    Wang, Jun-Kai
    Lin, Yu-Hsuan
    2016 ASIA-PACIFIC MICROWAVE CONFERENCE (APMC2016), 2016,
  • [14] A novel single event upset reversal in 40-nm bulk CMOS 6 T SRAM cells
    Li Peng
    Zhang Min-Xuan
    Zhao Zhen-Yu
    Deng Quan
    NUCLEAR SCIENCE AND TECHNIQUES, 2015, 26 (05)
  • [15] A Field Programmable 40-nm Pure CMOS Embedded Memory Macro using a PMOS Antifuse
    Kaku, Daichi
    Namekawa, Toshimasa
    Matsufuji, Kensuke
    Wada, Osamu
    Ito, Hiroshi
    Sugisawa, Yoshinori
    Shimizu, Sakiko
    Yamamoto, Takeshi
    Honda, Kenji
    Hamada, Mototsugu
    Numata, Kenji
    2009 IEEE ASIAN SOLID-STATE CIRCUITS CONFERENCE (A-SSCC), 2009, : 217 - 220
  • [16] A 60-GHz Outphasing Transmitter in 40-nm CMOS
    Zhao, Dixian
    Kulkarni, Shailesh
    Reynaert, Patrick
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2012, 47 (12) : 3172 - 3183
  • [17] Avalanche double photodiode in 40-nm standard CMOS technology
    Atef, Mohamed
    Polzer, Andreas
    Zimmermann, Horst
    Atef, M. (mabdelaal@emce.tuwien.ac.at), 1600, Institute of Electrical and Electronics Engineers Inc., United States (49): : 350 - 356
  • [18] A Cryo-CMOS PLL for Quantum Computing Applications
    Gong, Jiang
    Charbon, Edoardo
    Sebastiano, Fabio
    Babaie, Masoud
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2023, 58 (05) : 1362 - 1375
  • [19] Cryo-CMOS Electronics for Quantum Computing Applications
    Charbon, Edoardo
    IEEE 45TH EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC 2019), 2019, : 1 - 6
  • [20] Cryo-CMOS Electronics for Quantum Computing Applications
    Charbon, Edoardo
    49TH EUROPEAN SOLID-STATE DEVICE RESEARCH CONFERENCE (ESSDERC 2019), 2019, : 1 - 6