Robust {Cd4}-Organic Framework for Efficiently Catalyzing CO2 Cycloaddition and Knoevenagel Condensation

被引:19
|
作者
Liu S. [1 ]
Hu T. [1 ]
Yang K. [2 ]
Zhang X. [1 ]
机构
[1] Department of Chemistry, College of Science, North University of China, Taiyuan
[2] Teachers College, Inner Mongolia University of Science and Technology, Baotou
来源
Crystal Growth and Design | 2023年 / 23卷 / 05期
基金
中国国家自然科学基金;
关键词
Compilation and indexing terms; Copyright 2025 Elsevier Inc;
D O I
10.1021/acs.cgd.2c01472
中图分类号
学科分类号
摘要
The high-value-added carbonates generated from CO2 have attracted the attention of more and more researchers because of which the optimization of metal-organic framework (MOF)-based catalysts has seen a considerable upsurge at present. The scarcely reported cadmium(II)-based MOFs inspire us to explore CdOFs with excellent catalytic activity and high reusability. Herein, the unification of the unreported {Cd4(μ3-OH)2(CH3CO2-)} cluster and 2,6-bis(2,4-dicarboxylphenyl)-4-(4-carboxylphenyl)pyridine (H5BDCP) led to a highly robust nanoporous crystalline material of {(Me2NH2)5[Cd4(BDCP)2(μ3-OH)2(CH3CO2)(H2O)2]·3DMF·2H2O}n (NUC-67) with 57.4% void volume. Structural analysis displays that the inner surface of channels in activated NUC-67a is functionalized by Lewis acid sites of unsaturated Cd2+ ions and Lewis base sites of μ3-OH- groups, CH3CO2- anions, free pyridine, and C═O groups. Under solvent-free conditions, NUC-67a exhibits high catalytic performance on the cycloaddition of CO2 with epoxides; for instance, the conversion rate of propylene oxide (PO) into propylene carbonate (PC) with 1 atm CO2 can reach 99% within 6 h at 55 °C, resulting in a 660 turnover number and 110 h-1 turnover frequency. Moreover, Knoevenagel condensation reactions of aldehydes and malononitrile can be efficiently catalyzed by activated NUC-67a. Encouragingly, NUC-67a shows strong structural stability and good reversible cyclicity in the above two organic reactions with metal leaching below 8 ppb. Hence, this work proves that the optimization of MOF-based catalysts should focus on the design and selection of organic ligands, which plays a decisive role in structural regulation, such as cluster-based nodes, high defect of metal sites, unexpected insertion of Lewis base sites, and high-porosity channels. © 2023 American Chemical Society.
引用
收藏
页码:3320 / 3329
页数:9
相关论文
共 50 条
  • [21] Robust Nitro-Functionalized {Zn3}-Organic Framework for Excellent Catalytic Performance on Cycloaddition Reaction of CO2 with Epoxides and Knoevenagel Condensation
    Ren, Meiyu
    Li, Chong
    Hu, Tuoping
    Fan, Liming
    Zhang, Xiutang
    CRYSTAL GROWTH & DESIGN, 2024, 24 (08) : 3473 - 3482
  • [22] High-Entropy Lanthanide-Organic Framework as an Efficient Heterogeneous Catalyst for Cycloaddition of CO2 with Epoxides and Knoevenagel Condensation
    Jin, Siyang
    Fu, Yu
    Jie, Kecheng
    Dai, Huan
    Luo, Yun Jie
    Ye, Liang
    Zhou, Chaohui
    Xu, Wei
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (39)
  • [23] Bifunctional {Pb10K2}-Organic Framework for High Catalytic Activity in Cycloaddition of CO2 with Epoxides and Knoevenagel Condensation
    Liu, Shurong
    Chen, Hongtai
    Zhang, Xiutang
    ACS CATALYSIS, 2022, 12 (16) : 10373 - 10383
  • [24] Highly Robust {Ln4}-Organic Frameworks (Ln = Ho, Yb) for Excellent Catalytic Performance on Cycloaddition Reaction of Epoxides with CO2 and Knoevenagel Condensation
    Zhang, Tao
    Chen, Hongtai
    Liu, Shurong
    Lv, Hongxiao
    Zhang, Xiutang
    Li, Qiaoling
    ACS CATALYSIS, 2021, 11 (24) : 14916 - 14925
  • [25] Nanochannel-based {BaZn}-organic framework for catalytic activity on the cycloaddition reaction of epoxides with CO2 and deacetalization-Knoevenagel condensation
    Lv, Hongxiao
    Fan, Liming
    Chen, Hongtai
    Zhang, Xiutang
    Gao, Yanpeng
    DALTON TRANSACTIONS, 2022, 51 (09) : 3546 - 3556
  • [26] Immobilization of Ionic Liquid on a Covalent Organic Framework for Effectively Catalyzing Cycloaddition of CO2 to Epoxides
    Yan, Qianqian
    Liang, Hao
    Wang, Shenglin
    Hu, Hui
    Su, Xiaofang
    Xiao, Songtao
    Xu, Huanjun
    Jing, Xuechao
    Lu, Fei
    Gao, Yanan
    MOLECULES, 2022, 27 (19):
  • [27] One Robust Microporous TmIII-Organic Framework for Highly Catalytic Activity on Chemical CO2 Fixation and Knoevenagel Condensation
    Chen, Hongtai
    Hu, Tuoping
    Fan, Liming
    Zhang, Xiutang
    INORGANIC CHEMISTRY, 2021, 60 (02) : 1029 - 1037
  • [28] Robust Fluorine-Functionalized {Ln5}-Organic Frameworks for Excellent Catalytic Performance on Cycloaddition of CO2 with Epoxides and Knoevenagel Condensation
    Li, Chong
    Lv, Hongxiao
    Yang, Kun
    Zhang, Xiutang
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (29) : 35052 - 35061
  • [29] Two cyclotriveratrylene metal-organic frameworks as effective catalysts for Knoevenagel condensation and CO2 cycloaddition with epoxides
    Kang, Da-Wei
    Han, Xue
    Ma, Xin-Jun
    Liu, Ying-Ying
    Ma, Jian-Fang
    DALTON TRANSACTIONS, 2018, 47 (45) : 16197 - 16204
  • [30] Catalytic Investigation of CO2 Chemical Fixation and the Knoevenagel Condensation Reaction for a TmIII-Organic Framework
    Zhang, Tao
    Zhang, Zhengguo
    Chen, Hongtai
    Zhang, Xiutang
    Li, Qiaoling
    CRYSTAL GROWTH & DESIGN, 2022, 22 (01) : 304 - 312