Robust Fluorine-Functionalized {Ln5}-Organic Frameworks for Excellent Catalytic Performance on Cycloaddition of CO2 with Epoxides and Knoevenagel Condensation

被引:31
|
作者
Li, Chong [1 ]
Lv, Hongxiao [1 ]
Yang, Kun [2 ]
Zhang, Xiutang [1 ]
机构
[1] North Univ China, Sch Chem & Chem Engn, Shanxi Key Lab Adv Carbon Based Electrode Mat, Taiyuan 030051, Peoples R China
[2] Inner Mongolia Univ Sci & Technol, Teachers Coll, Baotou 014030, Peoples R China
关键词
Ln-based MOFs; spindly pentnuclear cluster; fluorofunctionalization; holmium; dysprosium; METAL-ORGANIC FRAMEWORKS; HETEROGENEOUS CATALYST; CHEMICAL FIXATION; EFFICIENT; CLUSTERS; MOFS; SITES; ISONICOTINATE; PRESSURE;
D O I
10.1021/acsami.3c06804
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Lanthanide-organic frameworks (LnOFs) are a classof promisingcatalysts on a large number of organic reactions because of the highercoordination number of Ln(3+) ions, inspired by which exploratorypreparation of cluster-based LnOFs was carried out by us. Herein,the exquisite combination of spindly [Ln(5)(& mu;(3)-OH)(6)(CO2)(6)(H2O)(6)] clusters (abbreviated as {Ln(5)}) and fluorine-functionalizedtetratopic ligand of 2 & PRIME;,3 & PRIME;-difluoro-[p-terphenyl]-3,3 & DPRIME;,5,5 & DPRIME;-tetracarboxylic acid (F-H(4)PTTA) engendered two highly robust isomorphic nanoporous frameworksof {[Ln(5)(FPTTA)(2)(& mu;(3)-OH)(6)(H2O)(6)](NO3)}( n ) (NUC-61, Ln = Ho and Dy). NUC-61 compounds are rarely reported{Ln(5)}-based 3D frameworks with nano-caged voids (19 & ANGS;x 17 & ANGS;), which are shaped by twelve [Ln(5)(& mu;(3)-OH)(6)(COO)(8)] clusters and eight completelydeprotonated F-PTTA(4-) ligands. Activated NUC-61a compounds are characterized by plentiful coexisted Lewis acid-basesites of open Ln(III) sites, capped & mu;(3)-OH,and -F. Judged by the ideal adsorbed solution theory (IAST), activated NUC-61Ho-a had a high CO2/CH4 adsorptiveselectivity with the value of 12.7 (CO2/CH4 =50/50) and 9.1 (CO2/CH4 = 5/95) at 298 K, whichcould lead to high-purity CH4 (& GE;99.9996%). Furthermore,catalytic experiments exhibited that NUC-61Ho-a, as arepresentative, could efficiently catalyze the cycloaddition reactionsof CO2 with epoxides as well as the Knoevenagel condensationreactions of aldehydes and malononitrile. This work proves that the{Ln(5)}-based skeletons of NUC-61 with chemicalstability, heterogeneity, and recyclability are an excellent acid-basebifunctional catalyst for some organic reactions.
引用
收藏
页码:35052 / 35061
页数:10
相关论文
共 50 条
  • [1] Highly Robust {Ln4}-Organic Frameworks (Ln = Ho, Yb) for Excellent Catalytic Performance on Cycloaddition Reaction of Epoxides with CO2 and Knoevenagel Condensation
    Zhang, Tao
    Chen, Hongtai
    Liu, Shurong
    Lv, Hongxiao
    Zhang, Xiutang
    Li, Qiaoling
    [J]. ACS CATALYSIS, 2021, 11 (24) : 14916 - 14925
  • [2] Robust Nitro-Functionalized {Zn3}-Organic Framework for Excellent Catalytic Performance on Cycloaddition Reaction of CO2 with Epoxides and Knoevenagel Condensation
    Ren, Meiyu
    Li, Chong
    Hu, Tuoping
    Fan, Liming
    Zhang, Xiutang
    [J]. CRYSTAL GROWTH & DESIGN, 2024, 24 (08) : 3473 - 3482
  • [3] Fluorine-Functionalized NbO-Type {Cu2}-Organic Framework: Enhanced Catalytic Performance on the Cycloaddition Reaction of CO2 with Epoxides and Deacetalization-Knoevenagel Condensation
    Chen, Hongtai
    Zhang, Tao
    Liu, Shurong
    Lv, Hongxiao
    Fan, Liming
    Zhang, Xiutang
    [J]. INORGANIC CHEMISTRY, 2022, 61 (30) : 11949 - 11958
  • [4] Nanoporous {Y2}-Organic Frameworks for Excellent Catalytic Performance on the Cycloaddition Reaction of Epoxides with CO2 and Deacetalization-Knoevenagel Condensation
    Chen, Hongtai
    Liu, Shurong
    Lv, Hongxiao
    Qin, Qi-Pin
    Zhang, Xiutang
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (16) : 18589 - 18599
  • [5] Nanoporous {Pb3}-Organic Framework for Catalytic Cycloaddition of CO2 with Epoxides and Knoevenagel Condensation
    Zhao, Bo
    Li, Chong
    Hu, Tuoping
    Zhang, Xiutang
    [J]. ACS APPLIED NANO MATERIALS, 2023, 6 (24) : 23196 - 23206
  • [6] Two cyclotriveratrylene metal-organic frameworks as effective catalysts for Knoevenagel condensation and CO2 cycloaddition with epoxides
    Kang, Da-Wei
    Han, Xue
    Ma, Xin-Jun
    Liu, Ying-Ying
    Ma, Jian-Fang
    [J]. DALTON TRANSACTIONS, 2018, 47 (45) : 16197 - 16204
  • [7] A highly robust {ZnTb}n-Organic framework for excellent catalytic performance on cycloaddition reaction of epoxides with CO2
    Zhang, Zhengguo
    Yang, Kun
    Liu, Shurong
    Zhang, Xiutang
    [J]. MICROPOROUS AND MESOPOROUS MATERIALS, 2023, 356
  • [8] Bifunctional {Pb10K2}-Organic Framework for High Catalytic Activity in Cycloaddition of CO2 with Epoxides and Knoevenagel Condensation
    Liu, Shurong
    Chen, Hongtai
    Zhang, Xiutang
    [J]. ACS CATALYSIS, 2022, 12 (16) : 10373 - 10383
  • [9] Heterometallic YbCo-Organic Framework for Efficiently Catalyzing Cycloaddition of CO2 with Epoxides and Knoevenagel Condensation
    Lv, Hongxiao
    Fan, Liming
    Jiao, Chenxu
    Zhang, Xiutang
    [J]. CRYSTAL GROWTH & DESIGN, 2023, 23 (04) : 2882 - 2892
  • [10] Bifunctional two-dimensional copper-organic framework for high catalytic performance on cycloaddition of CO2 with epoxides and deacetalization-Knoevenagel condensation
    Li, Chong
    Liu, Youbin
    Hu, Tuoping
    Gao, Yanpeng
    Fan, Liming
    Zhang, Xiutang
    [J]. JOURNAL OF MOLECULAR STRUCTURE, 2024, 1306