Catalytic Investigation of CO2 Chemical Fixation and the Knoevenagel Condensation Reaction for a TmIII-Organic Framework

被引:14
|
作者
Zhang, Tao [1 ,2 ]
Zhang, Zhengguo [1 ]
Chen, Hongtai [1 ]
Zhang, Xiutang [1 ]
Li, Qiaoling [1 ]
机构
[1] North Univ China, Taiyuan 030051, Peoples R China
[2] Taiyuan Inst Technol, Taiyuan 030008, Peoples R China
关键词
EFFICIENT HETEROGENEOUS CATALYST; SOLVENT-FREE CATALYST; MOFS; CONVERSION; SITES; PERFORMANCE; COCATALYST; CARBONATE; ZEOLITE; CAPTURE;
D O I
10.1021/acs.cgd.1c00935
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The delicate combination of wave-like [Tm-2(CO2)(6)(OH2)(2)](n), chains and [Tm-2(CO2)(4)(NO3)(OH2)] units with the aid of 2,6-bis(2,4-dicarboxylphenyl)-4-(4-carboxylphenyl)pyridine (H5BDCP) generates one highly robust dual-channel material of {[(CH3)(2)NH2](2)[Tm-3(BDCP)(2)(NO3)(OH2)(3)]center dot 4DMF center dot 2H(2)O}(n) (NUC-28) with excellent physicochemical properties including solvent-free dual channels, a bigger specific surface area, high porosity, water tolerance, and thermal stability. As far as we know, NUC-28 is one scarcely reported nitrate-functionalized microporous metal-organic framework (MOF) with N=O groups as Lewis base sites protruding on the inner surface of the channels. Thanks to the coexistence of Lewis acid-base sites including rich hexa-/hepta-coordinated Tm3+ ions, N=O and C=O groups from mu(1)-eta(1):eta(1) NO3- and CO2-, and N-pyridine atoms, NUC-28 displays high catalytic activity in the cycloaddition reaction of epoxides and CO2 into related cyclic carbonates under mild, solvent-free reaction conditions. In addition, Knoevenagel condensation reactions with aldehydes and malononitrile as substrates could be greatly accelerated in the presence of NUC-28. Hence, these catalytic results confirm that the introduction of Lewis base sites of NO3- anions on open metal sites in MOFs could effectively enhance its catalytic efficiency, which should be attributed to the recognized synergistic effect of Lewis base-acid active sites.
引用
收藏
页码:304 / 312
页数:9
相关论文
共 50 条
  • [1] One Robust Microporous TmIII-Organic Framework for Highly Catalytic Activity on Chemical CO2 Fixation and Knoevenagel Condensation
    Chen, Hongtai
    Hu, Tuoping
    Fan, Liming
    Zhang, Xiutang
    [J]. INORGANIC CHEMISTRY, 2021, 60 (02) : 1029 - 1037
  • [2] Nanochannel {InZn}-Organic Framework with a High Catalytic Performance on CO2 Chemical Fixation and Deacetalization-Knoevenagel Condensation
    Chen, Hongtai
    Zhang, Zhengguo
    Hu, Tuoping
    Zhang, Xiutang
    [J]. INORGANIC CHEMISTRY, 2021, 60 (21) : 16429 - 16438
  • [3] A nanocaged cadmium-organic framework with high catalytic activity on the chemical fixation of CO2 and deacetalization-knoevenagel condensation
    Lv, Hongxiao
    Zhang, Zhengguo
    Fan, Liming
    Gao, Yanpeng
    Zhang, Xiutang
    [J]. MICROPOROUS AND MESOPOROUS MATERIALS, 2022, 335
  • [4] Highly Robust 3s-3d {CaZn}-Organic Framework for Excellent Catalytic Performance on Chemical Fixation of CO2 and Knoevenagel Condensation Reaction
    Chen, Hongtai
    Fan, Liming
    Zhang, Xiutang
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (49) : 54884 - 54892
  • [5] Defect Engineering in a Nanoporous Thulium-Organic Framework in Catalyzing Knoevenagel Condensation and Chemical CO2 Fixation
    Fei, Yang
    Abazari, Reza
    Ren, Meiyu
    Wang, Xiaotong
    Zhang, Xiutang
    [J]. INORGANIC CHEMISTRY, 2024, : 18914 - 18923
  • [6] Nanoporous {Pb3}-Organic Framework for Catalytic Cycloaddition of CO2 with Epoxides and Knoevenagel Condensation
    Zhao, Bo
    Li, Chong
    Hu, Tuoping
    Zhang, Xiutang
    [J]. ACS APPLIED NANO MATERIALS, 2023, 6 (24) : 23196 - 23206
  • [7] Nanochannel-based {BaZn}-organic framework for catalytic activity on the cycloaddition reaction of epoxides with CO2 and deacetalization-Knoevenagel condensation
    Lv, Hongxiao
    Fan, Liming
    Chen, Hongtai
    Zhang, Xiutang
    Gao, Yanpeng
    [J]. DALTON TRANSACTIONS, 2022, 51 (09) : 3546 - 3556
  • [8] 6s-3d {Ba3Zn4}-Organic Framework as an Effective Heterogeneous Catalyst for Chemical Fixation of CO2 and Knoevenagel Condensation Reaction
    Chen, Hongtai
    Fan, Liming
    Hu, Tuoping
    Zhang, Xiutang
    [J]. INORGANIC CHEMISTRY, 2021, 60 (05) : 3384 - 3392
  • [9] The Investigation of CO2 Chemical Fixation and Fluorescent Recognition for YbIII-Organic Framework
    Di, Yanqing
    Chen, Yiheng
    Cao, Yang
    Cui, Xiaowei
    Liu, Yongliang
    Zhou, Chunsheng
    Di, Youying
    [J]. CATALYSIS LETTERS, 2024, 154 (02) : 685 - 694
  • [10] The Investigation of CO2 Chemical Fixation and Fluorescent Recognition for YbIII-Organic Framework
    Yanqing Di
    Yiheng Chen
    Yang Cao
    Xiaowei Cui
    Yongliang Liu
    Chunsheng Zhou
    Youying Di
    [J]. Catalysis Letters, 2024, 154 : 685 - 694