A convergent finite-volume scheme for nonlocal cross-diffusion systems for multi-species populations

被引:0
|
作者
Juengel, Ansgar [1 ]
Portisch, Stefan [1 ]
Zurek, Antoine [2 ]
机构
[1] Tech Univ Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
[2] Univ Technol Compiegne, LMAC, F-60200 Compiegne, France
关键词
Cross-diffusion system; population model; finite-volume scheme; entropy method; existence of solutions; EQUATIONS;
D O I
10.1051/m2an/2024016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An implicit Euler finite-volume scheme for a nonlocal cross-diffusion system on the one-dimensional torus, arising in population dynamics, is proposed and analyzed. The kernels are assumed to be in detailed balance and satisfy a weak cross-diffusion condition. The latter condition allows for negative off-diagonal coefficients and for kernels defined by an indicator function. The scheme preserves the nonnegativity of the densities, conservation of mass, and production of the Boltzmann and Rao entropies. The key idea is to "translate" the entropy calculations for the continuous equations to the finite-volume scheme, in particular to design discretizations of the mobilities, which guarantee a discrete chain rule even in the presence of nonlocal terms. Based on this idea, the existence of finite-volume solutions and the convergence of the scheme are proven. As a by-product, we deduce the existence of weak solutions to the continuous cross-diffusion system. Finally, we present some numerical experiments illustrating the behavior of the solutions to the nonlocal and associated local models.
引用
收藏
页码:759 / 792
页数:34
相关论文
共 50 条
  • [41] Analysis of a finite-volume scheme for a single-species biofilm model
    Helmer, Christoph
    Juengel, Ansgar
    Zurek, Antoine
    APPLIED NUMERICAL MATHEMATICS, 2023, 185 : 386 - 405
  • [42] CONVERGENCE OF A FINITE VOLUME SCHEME FOR NONLOCAL REACTION-DIFFUSION SYSTEMS MODELLING AN EPIDEMIC DISEASE
    Bendahmane, Mostafa
    Sepulveda, Mauricio
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2009, 11 (04): : 823 - 853
  • [43] Asymptotic behaviour of a finite-volume scheme for the transient drift-diffusion model
    Chainais-Hillairet, Claire
    Filbet, Francis
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2007, 27 (04) : 689 - 716
  • [44] A Finite-Volume Scheme for the Multidimensional Quantum Drift-Diffusion Model for Semiconductors
    Chainais-Hillairet, Claire
    Gisclon, Marguerite
    Juengel, Ansgar
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2011, 27 (06) : 1483 - 1510
  • [45] A finite-volume scheme for a spinorial matrix drift-diffusion model for semiconductors
    Chainais-Hillairet, Claire
    Juengel, Ansgar
    Shpartko, Polina
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (03) : 819 - 846
  • [46] Entropic structure and duality for multiple species cross-diffusion systems
    Lepoutre, Thomas
    Moussa, Ayman
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 159 : 298 - 315
  • [47] On Cross-Diffusion Systems for Two Populations Subject to a Common Congestion Effect
    Laborde, Maxime
    APPLIED MATHEMATICS AND OPTIMIZATION, 2020, 81 (03): : 989 - 1020
  • [48] On Cross-Diffusion Systems for Two Populations Subject to a Common Congestion Effect
    Maxime Laborde
    Applied Mathematics & Optimization, 2020, 81 : 989 - 1020
  • [49] Global Stability of Equilibrium of Multi-species Model with Cross Diffusion
    Anguelov, R.
    Tenkam, H. M. D.
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES (AMITANS'15), 2015, 1684
  • [50] A finite-volume scheme for gradient-flow equations with non-homogeneous diffusion
    Mendes, Julien
    Russo, Antonio
    Perez, Sergio P.
    Kalliadasis, Serafim
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 89 : 150 - 162