A convergent finite-volume scheme for nonlocal cross-diffusion systems for multi-species populations

被引:0
|
作者
Juengel, Ansgar [1 ]
Portisch, Stefan [1 ]
Zurek, Antoine [2 ]
机构
[1] Tech Univ Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
[2] Univ Technol Compiegne, LMAC, F-60200 Compiegne, France
关键词
Cross-diffusion system; population model; finite-volume scheme; entropy method; existence of solutions; EQUATIONS;
D O I
10.1051/m2an/2024016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An implicit Euler finite-volume scheme for a nonlocal cross-diffusion system on the one-dimensional torus, arising in population dynamics, is proposed and analyzed. The kernels are assumed to be in detailed balance and satisfy a weak cross-diffusion condition. The latter condition allows for negative off-diagonal coefficients and for kernels defined by an indicator function. The scheme preserves the nonnegativity of the densities, conservation of mass, and production of the Boltzmann and Rao entropies. The key idea is to "translate" the entropy calculations for the continuous equations to the finite-volume scheme, in particular to design discretizations of the mobilities, which guarantee a discrete chain rule even in the presence of nonlocal terms. Based on this idea, the existence of finite-volume solutions and the convergence of the scheme are proven. As a by-product, we deduce the existence of weak solutions to the continuous cross-diffusion system. Finally, we present some numerical experiments illustrating the behavior of the solutions to the nonlocal and associated local models.
引用
收藏
页码:759 / 792
页数:34
相关论文
共 50 条
  • [21] ZOOLOGY OF A NONLOCAL CROSS-DIFFUSION MODEL FOR TWO SPECIES
    Carrillo, Jose A.
    Huang, Yanghong
    Schmidtchen, Markus
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2018, 78 (02) : 1078 - 1104
  • [22] MARTINGALE SOLUTIONS OF STOCHASTIC NONLOCAL CROSS-DIFFUSION SYSTEMS
    Bendahmane, Mostafa
    Karlsen, Kenneth H.
    NETWORKS AND HETEROGENEOUS MEDIA, 2022, 17 (05) : 719 - 752
  • [23] A finite-volume scheme for fractional diffusion on bounded domains
    Bailo, Rafael
    Carrillo, Jose A.
    Fronzoni, Stefano
    Gomez-Castro, David
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2025, 36 (02) : 398 - 418
  • [24] Nonlinear degenerate cross-diffusion systems with nonlocal interaction
    Di Francesco, M.
    Esposito, A.
    Fagioli, S.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 169 : 94 - 117
  • [25] A CONVERGENT FINITE VOLUME SCHEME FOR DIFFUSION ON EVOLVING SURFACES
    Lenz, Martin
    Nemadjieu, Simplice Firmin
    Rumpf, Martin
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (01) : 15 - 37
  • [26] Numerical analysis of a finite volume scheme for a seawater intrusion model with cross-diffusion in an unconfined aquifer
    Oulhaj, Ahmed Ait Hammou
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (03) : 857 - 880
  • [27] On a cross-diffusion model for multiple species with nonlocal interaction and size exclusion
    Berendsen, Judith
    Burger, Martin
    Pietschmann, Jan-Frederik
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 159 : 10 - 39
  • [28] A LINEAR SCHEME TO APPROXIMATE NONLINEAR CROSS-DIFFUSION SYSTEMS
    Murakawa, Hideki
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2011, 45 (06): : 1141 - 1161
  • [29] DERIVATION OF A MULTI-SPECIES CROSS-DIFFUSION MODEL FROM A LATTICE DIFFERENTIAL EQUATION AND POSITIVITY OF ITS SOLUTIONS
    Rahman, Kazi A.
    Sonner, Stefanie
    Eberl, Hermann J.
    SUMMER SOLSTICE 2015 INTERNATIONAL CONFERENCE ON DISCRETE MODELS OF COMPLEX SYSTEMS, 2016, 9 (01): : 121 - 132
  • [30] Derivation of a multi-species cross-diffusion model from a lattice differential equation and positivity of its solutions
    Rahman, Kazi A.
    Sonner, Stefanie
    Eberl, Hermann J.
    Acta Physica Polonica B, Proceedings Supplement, 2016, 9 (01): : 121 - 132