A Finite-Volume Scheme for the Multidimensional Quantum Drift-Diffusion Model for Semiconductors

被引:9
|
作者
Chainais-Hillairet, Claire [2 ]
Gisclon, Marguerite [3 ]
Juengel, Ansgar [1 ]
机构
[1] Vienna Univ Technol, Inst Anal & Sci Comp, A-1040 Vienna, Austria
[2] Univ Clermont Ferrand, Math Lab, CNRS, UMR 6620, F-63177 Aubiere, France
[3] Univ Savoie, Math Lab, CNRS, UMR 5127, F-73376 Le Bourget Du Lac, France
基金
奥地利科学基金会;
关键词
density-gradient model; discrete Sobolev inequality; existence of solutions; finite-volume method; numerical convergence; quantum Bohm potential; quantum semiconductor devices; HYDRODYNAMIC EQUATIONS; DEVICE; CONVERGENCE; SIMULATION; TRANSPORT; ELECTRON; SYSTEM; STATE; LIMIT;
D O I
10.1002/num.20592
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A finite-volume scheme for the stationary unipolar quantum drift-diffusion equations for semiconductors in several space dimensions is analyzed. The model consists of a fourth-order elliptic equation for the electron density, coupled to the Poisson equation for the electrostatic potential, with mixed Dirichlet-Neumann boundary conditions. The numerical scheme is based on a Scharfetter-Gummel type reformulation of the equations. The existence of a sequence of solutions to the discrete problem and its numerical convergence to a solution to the continuous model are shown. Moreover, some numerical examples in two space dimensions are presented. (C) 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1483-1510, 2011
引用
收藏
页码:1483 / 1510
页数:28
相关论文
共 50 条
  • [1] A finite-volume scheme for a spinorial matrix drift-diffusion model for semiconductors
    Chainais-Hillairet, Claire
    Juengel, Ansgar
    Shpartko, Polina
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (03) : 819 - 846
  • [2] Asymptotic behaviour of a finite-volume scheme for the transient drift-diffusion model
    Chainais-Hillairet, Claire
    Filbet, Francis
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2007, 27 (04) : 689 - 716
  • [3] Convergence of a finite-volume scheme for the drift-diffusion equations in 1D
    Chainais-Hillairet, C
    Peng, YJ
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2003, 23 (01) : 81 - 108
  • [4] A SPLITTING SCHEME FOR A DRIFT-DIFFUSION MODEL OF SEMICONDUCTORS
    BEREZIN, YA
    DMITRIEVA, OE
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 1988, 7 (04) : 227 - 232
  • [5] The Multidimensional Bipolar Quantum Drift-diffusion Model
    Chen, Xiuqing
    Guo, Yingchun
    ADVANCED NONLINEAR STUDIES, 2008, 8 (04) : 799 - 816
  • [6] Approximate solutions to the quantum drift-diffusion model of semiconductors
    Romano, V.
    Torrisi, M.
    Tracina, R.
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (02)
  • [7] Group analysis of the drift-diffusion model for quantum semiconductors
    Ibragimov, N. H.
    Khamitova, R.
    Avdonina, E. D.
    Galiakberova, L. R.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 20 (01) : 74 - 78
  • [8] On the Multidimensional Bipolar Isothermal Quantum Drift-diffusion Model
    Dong, Jianwei
    INTELLIGENT SYSTEM AND APPLIED MATERIAL, PTS 1 AND 2, 2012, 466-467 : 186 - 190
  • [9] New solutions for the quantum drift-diffusion model of semiconductors
    Ramirez, J.
    Tracina, R.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (48)
  • [10] Conservation laws and solutions of a quantum drift-diffusion model for semiconductors
    Ibragimov, N. H.
    Khamitova, R.
    Avdonina, E. D.
    Galiakberova, L. R.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2015, 77 : 69 - 73