Characterization and Modeling of Silicon-on-Insulator Lateral Bipolar Junction Transistors at Liquid Helium Temperature

被引:0
|
作者
Zhang, Yuanke [1 ,2 ]
Chen, Yuefeng [1 ]
Zhang, Yifang [1 ]
Qiu, Liling [1 ,2 ]
Xu, Jun [1 ,2 ]
Luo, Chao [1 ,2 ]
Guo, Guoping [1 ,2 ,3 ,4 ]
机构
[1] Univ Sci & Technol China USTC, CAS Key Lab Quantum Informat, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China USTC, Dept Phys, Hefei 230026, Anhui, Peoples R China
[3] USTC, Hefei Natl Lab, Hefei 230088, Peoples R China
[4] USTC, Suzhou Inst Adv Res, Suzhou 215123, Peoples R China
基金
中国国家自然科学基金;
关键词
Characterization; cryogenic; lateral bipolar junction transistors (LBJTs); modeling; silicon-on-insulator (SOI); substrate modulation; tunneling; OPERATION; BASE; BIAS;
D O I
10.1109/TED.2024.3384143
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Conventional silicon bipolars are not suitable for low-temperature operation due to the deterioration of current gain ( $\bm{\beta}$ ). In this article, we characterize lateral bipolar junction transistors (LBJTs) fabricated on silicon-on-insulator (SOI) wafers down to liquid helium temperature (4 K). The positive SOI substrate bias greatly increases the collector current and has a negligible effect on the base current, thus significantly alleviating $\bm{\beta}$ degradation at low temperatures. We present a physical-based compact LBJT model for 4 K simulation, in which the collector current ( $\textit{I}_\textbf{{C}}$ ) consists of the tunneling current and the additional current component near the buried oxide (BOX)/silicon interface caused by the substrate modulation effect. This model is able to fit various characteristics of LBJTs well and has promising applications in amplifier circuits simulation for silicon-based qubits signals.
引用
收藏
页码:3525 / 3531
页数:7
相关论文
共 50 条
  • [1] Current Gain Enhancement for Silicon-on-Insulator Lateral Bipolar Junction Transistors Operating at Liquid-Helium Temperature
    Chen, Si
    Luo, Chao
    Zhang, Yujing
    Xu, Jun
    Hu, Qitao
    Zhang, Zhen
    Guo, Guoping
    IEEE ELECTRON DEVICE LETTERS, 2020, 41 (06) : 800 - 803
  • [2] SILICON-ON-INSULATOR BIPOLAR-TRANSISTORS
    RODDER, M
    ANTONIADIS, DA
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1983, 30 (11) : 1604 - 1605
  • [3] SILICON-ON-INSULATOR BIPOLAR-TRANSISTORS
    RODDER, M
    ANTONIADIS, DA
    IEEE ELECTRON DEVICE LETTERS, 1983, 4 (06) : 193 - 195
  • [4] RF model of lateral bipolar junction transistor on silicon-on-insulator substrate
    Lee, Dora
    Sun, I-Shan Michael
    Ng, Wai Tung
    2005 IEEE CONFERENCE ON ELECTRON DEVICES AND SOLID-STATE CIRCUITS, PROCEEDINGS, 2005, : 313 - 316
  • [5] Early effect modeling of silicon-on-insulator SiGe heterojunction bipolar transistors
    徐小波
    张鹤鸣
    胡辉勇
    马建立
    Chinese Physics B, 2011, (05) : 448 - 453
  • [6] Early effect modeling of silicon-on-insulator SiGe heterojunction bipolar transistors
    Xu Xiao-Bo
    Zhang He-Ming
    Hu Hui-Yong
    Ma Jian-Li
    CHINESE PHYSICS B, 2011, 20 (05)
  • [7] Characterization of Parasitic Bipolar Transistors in 45 nm Silicon-on-Insulator Technology
    Wissel, Larry
    Oldiges, Phil
    Guo, Dechao
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2010, 57 (06) : 3234 - 3238
  • [9] Effects of Substrate Bias on Low-Frequency Noise in Lateral Bipolar Transistors Fabricated on Silicon-on-Insulator Substrate
    Hu, Qitao
    Chen, Si
    Zhang, Shi-Li
    Solomon, Paul
    Zhang, Zhen
    IEEE ELECTRON DEVICE LETTERS, 2020, 41 (01) : 4 - 7
  • [10] New lateral insulated-gate bipolar transistor on silicon-on-insulator
    Choi, WB
    Sung, WJ
    Park, CI
    Kim, S
    Sung, MY
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2002, 40 (04) : 645 - 648