Spectral Gap and Edge Universality of Dense Random Regular Graphs

被引:1
|
作者
He, Yukun [1 ]
机构
[1] City Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
关键词
RANDOM MATRICES UNIVERSALITY; LOCAL SEMICIRCLE LAW; EIGENVALUE STATISTICS; BULK UNIVERSALITY; FAMILIES; DELOCALIZATION; FLUCTUATIONS; PROOF;
D O I
10.1007/s00220-024-05063-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let A be the adjacency matrix of a random d-regular graph on N vertices, and we denote its eigenvalues by lambda(1) >= lambda(2) . . . >= lambda(N). For N2/3+o(1) <= d <= N/2, we prove optimal rigidity estimates of the extreme eigenvalues of A, which in particular imply that max{|lambda(N)|, lambda(2)} < 2 root d-1 with very high probability. In the same regime of d, we also show that N-2/3(lambda(2)+d/N root d(N-d)/N-2) (sic) TW1, where TW1 is the Tracy-Widom distribution for GOE; analogue results also hold for other non-trivial extreme eigenvalues.
引用
收藏
页数:40
相关论文
共 50 条
  • [1] THE SPECTRAL GAP OF DENSE RANDOM REGULAR GRAPHS
    Tikhomirov, Konstantin
    Youssef, Pierre
    [J]. ANNALS OF PROBABILITY, 2019, 47 (01): : 362 - 419
  • [2] The spectral gap of random regular graphs
    Sarid, Amir
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2023, 63 (02) : 557 - 587
  • [3] Edge rigidity and universality of random regular graphs of intermediate degree
    Roland Bauerschmidt
    Jiaoyang Huang
    Antti Knowles
    Horng-Tzer Yau
    [J]. Geometric and Functional Analysis, 2020, 30 : 693 - 769
  • [4] EDGE RIGIDITY AND UNIVERSALITY OF RANDOM REGULAR GRAPHS OF INTERMEDIATE DEGREE
    Bauerschmidt, Roland
    Huang, Jiaoyang
    Knowles, Antti
    Yau, Horng-Tzer
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2020, 30 (03) : 693 - 769
  • [5] SIZE BIASED COUPLINGS AND THE SPECTRAL GAP FOR RANDOM REGULAR GRAPHS
    Cook, Nicholas
    Goldstein, Larry
    Johnson, Tobias
    [J]. ANNALS OF PROBABILITY, 2018, 46 (01): : 72 - 125
  • [6] The Diameter of Dense Random Regular Graphs
    Shimizu, Nobutaka
    [J]. SODA'18: PROCEEDINGS OF THE TWENTY-NINTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2018, : 1934 - 1944
  • [7] Sandwiching dense random regular graphs between binomial random graphs
    Pu Gao
    Mikhail Isaev
    Brendan D. McKay
    [J]. Probability Theory and Related Fields, 2022, 184 : 115 - 158
  • [8] Sandwiching dense random regular graphs between binomial random graphs
    Gao, Pu
    Isaev, Mikhail
    McKay, Brendan D.
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2022, 184 (1-2) : 115 - 158
  • [9] Regular graphs with minimum spectral gap
    Abdi, M.
    Ghorbani, E.
    Imrich, W.
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2021, 95
  • [10] Subgraph distributions in dense random regular graphs
    Sah, Ashwin
    Sawhney, Mehtaab
    [J]. COMPOSITIO MATHEMATICA, 2023, 159 (10) : 2125 - 2148