EDGE RIGIDITY AND UNIVERSALITY OF RANDOM REGULAR GRAPHS OF INTERMEDIATE DEGREE

被引:12
|
作者
Bauerschmidt, Roland [1 ]
Huang, Jiaoyang [2 ]
Knowles, Antti [3 ]
Yau, Horng-Tzer [4 ]
机构
[1] Univ Cambridge, Cambridge, England
[2] IAS, Princeton, NJ USA
[3] Univ Geneva, Geneva, Switzerland
[4] Harvard Univ, Cambridge, MA 02138 USA
基金
欧洲研究理事会; 瑞士国家科学基金会;
关键词
RANDOM MATRICES UNIVERSALITY; BIPARTITE RAMANUJAN GRAPHS; EIGENVALUE STATISTICS; SPECTRAL STATISTICS; CIRCULAR LAW; FAMILIES; GAP;
D O I
10.1007/s00039-020-00538-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For random d-regular graphs on N vertices with 1 << d << N-2/3, we develop a d(-1/2) expansion of the local eigenvalue distribution about the Kesten-McKay law up to order d(-3). This result is valid up to the edge of the spectrum. It implies that the eigenvalues of such random regular graphs are more rigid than those of Erdos-Renyi graphs of the same average degree. As a first application, for 1 << d << N-2/3, we show that all nontrivial eigenvalues of the adjacency matrix are with very high probability bounded in absolute value by (2 + o(1))root d - 1. As a second application, for N-2/9 << d << N-1/3, we prove that the extremal eigenvalues are concentrated at scale N-2/3 and their fluctuations are governed by Tracy-Widom statistics. Thus, in the same regime of d, 52% of all d-regular graphs have second-largest eigenvalue strictly less than 2 root d - 1.
引用
收藏
页码:693 / 769
页数:77
相关论文
共 50 条
  • [1] Edge rigidity and universality of random regular graphs of intermediate degree
    Roland Bauerschmidt
    Jiaoyang Huang
    Antti Knowles
    Horng-Tzer Yau
    [J]. Geometric and Functional Analysis, 2020, 30 : 693 - 769
  • [2] Spectral Gap and Edge Universality of Dense Random Regular Graphs
    He, Yukun
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (08)
  • [3] UNIVERSALITY OF RANDOM GRAPHS FOR GRAPHS OF MAXIMUM DEGREE TWO
    Kim, Jeong Han
    Lee, Sang June
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2014, 28 (03) : 1467 - 1478
  • [4] Optimal Eigenvalue Rigidity of Random Regular Graphs
    Huang, Jiaoyang
    McKenzie, Theo
    Yau, Horng-Tzer
    [J]. arXiv,
  • [5] REGULAR GRAPHS WITH HIGH EDGE DEGREE
    SPRAGUE, AP
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1977, 22 (03) : 199 - 206
  • [6] CORRELATED RANDOM MATRICES: BAND RIGIDITY AND EDGE UNIVERSALITY
    Alt, Johannes
    Erdos, Laszlo
    Krueger, Torben
    Schroeder, Dominik
    [J]. ANNALS OF PROBABILITY, 2020, 48 (02): : 963 - 1001
  • [7] Random regular graphs of high degree
    Krivelevich, M
    Sudakov, B
    Vu, VH
    Wormald, NC
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2001, 18 (04) : 346 - 363
  • [8] Edge coloring regular graphs of high degree
    Perkovic, L
    Reed, B
    [J]. DISCRETE MATHEMATICS, 1997, 165 : 567 - 578
  • [9] Spectral rigidity for addition of random matrices at the regular edge
    Bao, Zhigang
    Erdos, Laszlo
    Schnelli, Kevin
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (07)
  • [10] Edge-colouring of regular graphs of large degree
    De Simone, Caterina
    Galluccio, Anna
    [J]. THEORETICAL COMPUTER SCIENCE, 2007, 389 (1-2) : 91 - 99