Spectral Gap and Edge Universality of Dense Random Regular Graphs

被引:1
|
作者
He, Yukun [1 ]
机构
[1] City Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
关键词
RANDOM MATRICES UNIVERSALITY; LOCAL SEMICIRCLE LAW; EIGENVALUE STATISTICS; BULK UNIVERSALITY; FAMILIES; DELOCALIZATION; FLUCTUATIONS; PROOF;
D O I
10.1007/s00220-024-05063-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let A be the adjacency matrix of a random d-regular graph on N vertices, and we denote its eigenvalues by lambda(1) >= lambda(2) . . . >= lambda(N). For N2/3+o(1) <= d <= N/2, we prove optimal rigidity estimates of the extreme eigenvalues of A, which in particular imply that max{|lambda(N)|, lambda(2)} < 2 root d-1 with very high probability. In the same regime of d, we also show that N-2/3(lambda(2)+d/N root d(N-d)/N-2) (sic) TW1, where TW1 is the Tracy-Widom distribution for GOE; analogue results also hold for other non-trivial extreme eigenvalues.
引用
收藏
页数:40
相关论文
共 50 条
  • [41] Packings in dense regular graphs
    Kühn, D
    Osthus, D
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2005, 14 (03): : 325 - 337
  • [42] Optimal construction of edge-disjoint paths in random regular graphs
    Frieze, AM
    Zhao, L
    [J]. PROCEEDINGS OF THE TENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 1999, : 346 - 355
  • [43] Mobility Edge in the Anderson Model on Partially Disordered Random Regular Graphs
    O. Valba
    A. Gorsky
    [J]. JETP Letters, 2022, 116 : 398 - 404
  • [44] Mobility Edge in the Anderson model on partially disordered random regular graphs
    Valba, Olga
    Gorsky, A.
    [J]. arXiv, 2021,
  • [45] Optimal construction of edge-disjoint paths in random regular graphs
    Frieze, AM
    Zhao, L
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2000, 9 (03): : 241 - 263
  • [46] Mobility Edge in the Anderson Model on Partially Disordered Random Regular Graphs
    Valba, O.
    Gorsky, A.
    [J]. JETP LETTERS, 2022, 116 (06) : 398 - 404
  • [47] A Spectral Algorithm for Finding Maximum Cliques in Dense Random Intersection Graphs
    Christodoulou, Filippos
    Nikoletseas, Sotiris
    Raptopoulos, Christoforos
    Spirakis, Paul G.
    [J]. SOFSEM 2023: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2023, 13878 : 18 - 32
  • [48] Universality of Random Graphs and Rainbow Embedding
    Ferber, Asaf
    Nenadov, Rajko
    Peter, Ueli
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2016, 48 (03) : 546 - 564
  • [49] ALMOST SPANNING UNIVERSALITY IN RANDOM GRAPHS
    Parczyk, O.
    [J]. ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2019, 88 (03): : 997 - 1002
  • [50] UNIVERSALITY OF RANDOM GRAPHS FOR GRAPHS OF MAXIMUM DEGREE TWO
    Kim, Jeong Han
    Lee, Sang June
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2014, 28 (03) : 1467 - 1478