DiffMat: Latent diffusion models for image-guided material generation

被引:5
|
作者
Yuan, Liang [1 ]
Yan, Dingkun [2 ]
Saito, Suguru [2 ]
Fujishiro, Issei [3 ]
机构
[1] Keio Univ, Grad Sch Sci & Technol, Yokohama, Kanagawa, Japan
[2] Tokyo Inst Technol, Sch Comp, Tokyo, Japan
[3] Keio Univ, Dept Informat & Comp Sci, Yokohama, Kanagawa, Japan
来源
VISUAL INFORMATICS | 2024年 / 8卷 / 01期
关键词
SVBRDF; Diffusion model; Generative model; Appearance modeling;
D O I
10.1016/j.visinf.2023.12.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Creating realistic materials is essential in the construction of immersive virtual environments. While existing techniques for material capture and conditional generation rely on flash-lit photos, they often produce artifacts when the illumination mismatches the training data. In this study, we introduce DiffMat, a novel diffusion model that integrates the CLIP image encoder and a multi-layer, crossattention denoising backbone to generate latent materials from images under various illuminations. Using a pre-trained StyleGAN-based material generator, our method converts these latent materials into high-resolution SVBRDF textures, a process that enables a seamless fit into the standard physically based rendering pipeline, reducing the requirements for vast computational resources and expansive datasets. DiffMat surpasses existing generative methods in terms of material quality and variety, and shows adaptability to a broader spectrum of lighting conditions in reference images. (c) 2024 The Authors. Published by Elsevier B.V. on behalf of Zhejiang University and Zhejiang University Press Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:6 / 14
页数:9
相关论文
共 50 条
  • [41] Image-guided radiation therapy
    Poortmans, P.
    Essers, M.
    Osman, S.
    Hol, S.
    EUROPEAN JOURNAL OF CANCER, 2013, 49 : S35 - S36
  • [42] Image-guided spinal navigation
    Kalfas, IH
    TECHNIQUES IN NEUROSURGERY, 2003, 8 (01): : 47 - 55
  • [43] Image-guided percutaneous gastrostomy
    Blondet, A.
    Lebigot, J.
    Nicolas, G.
    Person, B.
    Laccoureye, L.
    Goura, E.
    Ridereau-Zins, C.
    Aube, C.
    JOURNAL DE RADIOLOGIE, 2008, 89 (09): : 1065 - 1075
  • [44] Image-guided robotics and navigation
    Melzer, Andreas
    MINIMALLY INVASIVE THERAPY & ALLIED TECHNOLOGIES, 2007, 16 (04) : 194 - 195
  • [45] Image-guided tissue engineering
    Ballyns, Jeffrey J.
    Bonassar, Lawrence J.
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2009, 13 (8A) : 1428 - 1436
  • [46] Image-guided thermal therapy
    Hynynen, K
    Vykhodtseva, N
    McDannold, N
    Bronson, R
    Jolesz, F
    RADIATION RESEARCH, VOL 2, CONGRESS PROCEEDINGS, 2000, : 845 - 848
  • [47] Image-guided robotic radiosurgery
    Adler, JR
    Murphy, MJ
    Chang, SD
    Hancock, SL
    NEUROSURGERY, 1999, 44 (06) : 1299 - 1306
  • [48] Optical Image-Guided Surgery
    Farahani, Keyvan
    Pogue, B.
    Glaser, A.
    Bradbury, M.
    MEDICAL PHYSICS, 2017, 44 (06) : 3195 - 3195
  • [50] On the unimportance of constitutive models in computing brain deformation for image-guided surgery
    Adam Wittek
    Trent Hawkins
    Karol Miller
    Biomechanics and Modeling in Mechanobiology, 2009, 8 : 77 - 84