DiffMat: Latent diffusion models for image-guided material generation

被引:5
|
作者
Yuan, Liang [1 ]
Yan, Dingkun [2 ]
Saito, Suguru [2 ]
Fujishiro, Issei [3 ]
机构
[1] Keio Univ, Grad Sch Sci & Technol, Yokohama, Kanagawa, Japan
[2] Tokyo Inst Technol, Sch Comp, Tokyo, Japan
[3] Keio Univ, Dept Informat & Comp Sci, Yokohama, Kanagawa, Japan
来源
VISUAL INFORMATICS | 2024年 / 8卷 / 01期
关键词
SVBRDF; Diffusion model; Generative model; Appearance modeling;
D O I
10.1016/j.visinf.2023.12.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Creating realistic materials is essential in the construction of immersive virtual environments. While existing techniques for material capture and conditional generation rely on flash-lit photos, they often produce artifacts when the illumination mismatches the training data. In this study, we introduce DiffMat, a novel diffusion model that integrates the CLIP image encoder and a multi-layer, crossattention denoising backbone to generate latent materials from images under various illuminations. Using a pre-trained StyleGAN-based material generator, our method converts these latent materials into high-resolution SVBRDF textures, a process that enables a seamless fit into the standard physically based rendering pipeline, reducing the requirements for vast computational resources and expansive datasets. DiffMat surpasses existing generative methods in terms of material quality and variety, and shows adaptability to a broader spectrum of lighting conditions in reference images. (c) 2024 The Authors. Published by Elsevier B.V. on behalf of Zhejiang University and Zhejiang University Press Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:6 / 14
页数:9
相关论文
共 50 条
  • [21] Image-guided surgery
    Rodman, Lisa
    Biomedical Instrumentation and Technology, 2002, 36 (06): : 411 - 415
  • [22] Image-guided surgery
    Grimson, WEL
    Kikinis, R
    Jolesz, FA
    Black, PM
    SCIENTIFIC AMERICAN, 1999, 280 (06) : 62 - 69
  • [23] Image-guided brachytherapy
    Villafranca, E.
    Romero, P.
    Sola, A.
    Asin, G.
    Rico, M.
    Vila, M. T.
    ANALES DEL SISTEMA SANITARIO DE NAVARRA, 2009, 32 : 51 - 59
  • [24] Image-guided surgery
    Hinsche, AF
    Smith, RM
    CURRENT ORTHOPAEDICS, 2001, 15 (04): : 296 - 303
  • [25] Image-guided surgery
    Mezrich, RS
    ACADEMIC RADIOLOGY, 2001, 8 (09) : 819 - 821
  • [26] Image-guided neuroendoscopy
    Moreau, JJ
    Ghorbel, M
    Moufid, A
    Hallacq, P
    Lagarrigue, JF
    Alibenali, M
    Vidal, J
    NEUROCHIRURGIE, 2002, 48 (2-3) : 92 - 96
  • [27] Subject-specific models for image-guided cardiac surgery
    Wierzbicki, Marcin
    Moore, John
    Drangova, Maria
    Peters, Terry
    PHYSICS IN MEDICINE AND BIOLOGY, 2008, 53 (19): : 5295 - 5312
  • [28] Osteoid Osteoma Treatment: Image-guided Resection Vs Image-guided Ablation
    Wirth, Alexxa
    Towbin, Richard B.
    Schaefer, Carrie M.
    Towbin, Alexander J.
    APPLIED RADIOLOGY, 2022, 51 (04) : 55 - 58
  • [29] GENERATION OR REPLICATION: AUSCULTATING AUDIO LATENT DIFFUSION MODELS
    Bralios, Dimitrios
    Wichern, Gordon
    Germain, Francois G.
    Pan, Zexu
    Khurana, Sameer
    Hori, Chiori
    Le Roux, Jonathan
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 1156 - 1160
  • [30] Safety and results of image-guided vertebroplasty with elastomeric polymer material (elastoplasty)
    Mauri G.
    Nicosia L.
    Sconfienza L.M.
    Varano G.M.
    Vigna P.D.
    Bonomo G.
    Orsi F.
    Anselmetti G.C.
    European Radiology Experimental, 2 (1)