DiffMat: Latent diffusion models for image-guided material generation

被引:5
|
作者
Yuan, Liang [1 ]
Yan, Dingkun [2 ]
Saito, Suguru [2 ]
Fujishiro, Issei [3 ]
机构
[1] Keio Univ, Grad Sch Sci & Technol, Yokohama, Kanagawa, Japan
[2] Tokyo Inst Technol, Sch Comp, Tokyo, Japan
[3] Keio Univ, Dept Informat & Comp Sci, Yokohama, Kanagawa, Japan
来源
VISUAL INFORMATICS | 2024年 / 8卷 / 01期
关键词
SVBRDF; Diffusion model; Generative model; Appearance modeling;
D O I
10.1016/j.visinf.2023.12.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Creating realistic materials is essential in the construction of immersive virtual environments. While existing techniques for material capture and conditional generation rely on flash-lit photos, they often produce artifacts when the illumination mismatches the training data. In this study, we introduce DiffMat, a novel diffusion model that integrates the CLIP image encoder and a multi-layer, crossattention denoising backbone to generate latent materials from images under various illuminations. Using a pre-trained StyleGAN-based material generator, our method converts these latent materials into high-resolution SVBRDF textures, a process that enables a seamless fit into the standard physically based rendering pipeline, reducing the requirements for vast computational resources and expansive datasets. DiffMat surpasses existing generative methods in terms of material quality and variety, and shows adaptability to a broader spectrum of lighting conditions in reference images. (c) 2024 The Authors. Published by Elsevier B.V. on behalf of Zhejiang University and Zhejiang University Press Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:6 / 14
页数:9
相关论文
共 50 条
  • [32] The IMPORT HIGH Image-guided Radiotherapy Study: A Model for Assessing Image-guided Radiotherapy
    Donovan, E. M.
    Harris, E. J.
    Mukesh, M. B.
    Haviland, J. S.
    Titley, J.
    Griffin, C.
    Coles, C. E.
    Evans, P. M.
    CLINICAL ONCOLOGY, 2015, 27 (01) : 3 - 5
  • [33] MMT: Image-guided Story Ending Generation with Multimodal Memory Transformer
    Xue, Dizhan
    Qian, Shengsheng
    Fang, Quan
    Xu, Changsheng
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022,
  • [34] Filter-Guided Diffusion for Controllable Image Generation
    Gu, Zeqi
    Yang, Ethan
    Davis, Abe
    PROCEEDINGS OF SIGGRAPH 2024 CONFERENCE PAPERS, 2024,
  • [35] Adaptive prompt guided unified image restoration with latent diffusion model
    Lv, Xiang
    Shao, Mingwen
    Wan, Yecong
    Qiao, Yuanjian
    Wang, Changzhong
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 146
  • [36] An Adaptive and Image-guided Fusion for Stereo Satellite Image Derived Digital Surface Models
    Hessah ALBANWAN
    Rongjun QIN
    Journal of Geodesy and Geoinformation Science, 2022, 5 (04) : 1 - 9
  • [37] On the unimportance of constitutive models in computing brain deformation for image-guided surgery
    Wittek, Adam
    Hawkins, Trent
    Miller, Karol
    BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2009, 8 (01) : 77 - 84
  • [38] Tissue deformation and shape models in image-guided interventions: a discussion paper
    Hawkes, DJ
    Barratt, D
    Blackall, JM
    Chan, C
    Edwards, PJ
    Rhode, K
    Penney, GP
    McClelland, J
    Hill, DLG
    MEDICAL IMAGE ANALYSIS, 2005, 9 (02) : 163 - 175
  • [39] Image-guided tumor ablation
    Koch, G.
    Cazzato, R. L.
    Caudrelier, J.
    Cathelineauc, X.
    Lang, H.
    Gangi, A.
    PROGRES EN UROLOGIE, 2017, 27 (15): : 853 - 864
  • [40] Image-Guided Cancer Nanomedicine
    Kim, Dong-Hyun
    JOURNAL OF IMAGING, 2018, 4 (01)