A Dirac-Type Theorem for Uniform Hypergraphs

被引:0
|
作者
Ma, Yue [1 ]
Hou, Xinmin [2 ,3 ,4 ]
Gao, Jun [2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Math & Stat, Nanjing 210094, Jiangsu, Peoples R China
[2] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Key Lab Wu Wen Tsun Math, Hefei 230026, Anhui, Peoples R China
[4] Univ Sci & Technol China, Hefei Natl Lab, Hefei 230088, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Hypergraph; Dirac Theorem; Minimum degree; GRAPHS;
D O I
10.1007/s00373-024-02802-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
yDirac (Proc Lond Math Soc (3) 2:69-81, 1952) proved that every connected graph of order n > 2k + 1 with minimum degree more than k contains a path of length at least 2k + 1. In this article, we give a hypergraph extension of Dirac's theorem: Given positive integers n, k and r, let H be a connected n-vertex r-graph with no Berge path of length 2k + 1. (1) If k > r >= 4 and n > 2k + 1, then delta(1)(H) <= (k r-1). Furthermore, there exist hypergraphs S-r' (n, k), Sr (n, k) and S(sK(k+1)((r)), 1) such that the equality holds if and only if S-r' (n, k) subset of H subset of S-r (n, k) or H congruent to S(sK(k+1)((r)) , 1); (2) If k >= r >= 2 and n > 2k(r - 1), then delta(1)(H) <= (k r-1). As an application of (1), we give a better lower bound of the minimum degree than the ones in the Dirac-type results for Berge Hamiltonian cycle given by Bermond et al. (Hypergraphes Hamiltoniens. In: Problemes combinatoires et theorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976). Colloq. Internat. CNRS, vol. 260, pp. 39-43. CNRS, Paris, 1976) or Clemens et al. (Electron Notes Discrete Math 54:181-186, 2016), respectively.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] A Dirac-type theorem for 3-uniform hypergraphs
    Rödl, V
    Rucinski, A
    Szemerédi, E
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2006, 15 (1-2): : 229 - 251
  • [2] An approximate Dirac-type theorem for k-uniform hypergraphs
    Vojtěch Rödl
    Endre Szemerédi
    Andrzej Ruciński
    [J]. Combinatorica, 2008, 28 : 229 - 260
  • [3] An approximate dirac-type theorem for k-uniform hypergraphs
    Rodl, Vojtech
    Rucinski, Andrzej
    Szemeredi, Endre
    [J]. COMBINATORICA, 2008, 28 (02) : 229 - 260
  • [4] A Dirac-type theorem for Berge cycles in random hypergraphs
    Clemens, Dennis
    Ehrenmueller, Julia
    Person, Yury
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (03): : 1 - 23
  • [5] Dirac-type results for loose Hamilton cycles in uniform hypergraphs
    Han, Hiep
    Schacht, Mathias
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2010, 100 (03) : 332 - 346
  • [6] Dirac-type theorems in random hypergraphs
    Ferber, Asaf
    Kwan, Matthew
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2022, 155 : 318 - 357
  • [7] Dirac-type conditions for hamiltonian paths and cycles in 3-uniform hypergraphs
    Roedl, Vojtech
    Rucinski, Andrzej
    Szemeredi, Endre
    [J]. ADVANCES IN MATHEMATICS, 2011, 227 (03) : 1225 - 1299
  • [8] A DIRAC-TYPE THEOREM FOR SQUARES OF GRAPHS
    TRACZYK, T
    [J]. JOURNAL OF GRAPH THEORY, 1988, 12 (04) : 463 - 467
  • [9] Properly Colored Hamilton Cycles in Dirac-Type Hypergraphs
    Antoniuk, Sylwia
    Kamcev, Nina
    Rucinski, Andrzej
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2023, 30 (01):
  • [10] Dirac-type theorems for long Berge cycles in hypergraphs
    Kostochka, Alexandr
    Luo, Ruth
    McCourt, Grace
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2024, 168 : 159 - 191