A Dirac-Type Theorem for Uniform Hypergraphs

被引:0
|
作者
Ma, Yue [1 ]
Hou, Xinmin [2 ,3 ,4 ]
Gao, Jun [2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Math & Stat, Nanjing 210094, Jiangsu, Peoples R China
[2] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Key Lab Wu Wen Tsun Math, Hefei 230026, Anhui, Peoples R China
[4] Univ Sci & Technol China, Hefei Natl Lab, Hefei 230088, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Hypergraph; Dirac Theorem; Minimum degree; GRAPHS;
D O I
10.1007/s00373-024-02802-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
yDirac (Proc Lond Math Soc (3) 2:69-81, 1952) proved that every connected graph of order n > 2k + 1 with minimum degree more than k contains a path of length at least 2k + 1. In this article, we give a hypergraph extension of Dirac's theorem: Given positive integers n, k and r, let H be a connected n-vertex r-graph with no Berge path of length 2k + 1. (1) If k > r >= 4 and n > 2k + 1, then delta(1)(H) <= (k r-1). Furthermore, there exist hypergraphs S-r' (n, k), Sr (n, k) and S(sK(k+1)((r)), 1) such that the equality holds if and only if S-r' (n, k) subset of H subset of S-r (n, k) or H congruent to S(sK(k+1)((r)) , 1); (2) If k >= r >= 2 and n > 2k(r - 1), then delta(1)(H) <= (k r-1). As an application of (1), we give a better lower bound of the minimum degree than the ones in the Dirac-type results for Berge Hamiltonian cycle given by Bermond et al. (Hypergraphes Hamiltoniens. In: Problemes combinatoires et theorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976). Colloq. Internat. CNRS, vol. 260, pp. 39-43. CNRS, Paris, 1976) or Clemens et al. (Electron Notes Discrete Math 54:181-186, 2016), respectively.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] DIRAC-TYPE SYSTEM WITH VARIABLE-COEFFICIENTS
    YAKUBOV, VY
    [J]. DIFFERENTIAL EQUATIONS, 1993, 29 (01) : 132 - 138
  • [32] Dirac-type results for tilings and coverings in ordered graphs
    Freschi, Andrea
    Treglown, Andrew
    [J]. FORUM OF MATHEMATICS SIGMA, 2022, 10
  • [33] Abstract wave equations and associated Dirac-type operators
    Gesztesy, Fritz
    Goldstein, Jerome A.
    Holden, Helge
    Teschl, Gerald
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2012, 191 (04) : 631 - 676
  • [34] Dirac-type gauge theories and the mass of the Higgs boson
    Tolksdorf, Jurgen
    Thumstaedter, Torsten
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (31) : 9691 - 9716
  • [35] INFINITE-COMPONENT SYSTEMS OF DIRAC-TYPE EQUATIONS
    ONUFRIICHUK, SP
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 1990, 84 (03) : 899 - 910
  • [36] RESONANCE REACTIONS INVOLVING DIRAC-TYPE INCIDENT PARTICLES
    GOERTZEL, G
    [J]. PHYSICAL REVIEW, 1948, 73 (12): : 1463 - 1466
  • [37] The local Borg–Marchenko uniqueness theorem for Dirac-type systems with locally smooth at the right endpoint rectangular potentials
    Tiezheng Li
    Guangsheng Wei
    [J]. Annals of Functional Analysis, 2024, 15
  • [38] A Dirac-Type Result on Hamilton Cycles in Oriented Graphs
    Kelly, Luke
    Kuehn, Daniela
    Osthust, Deryk
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2008, 17 (05): : 689 - 709
  • [39] DIRAC-TYPE AGGREGATION WITH FULL MASS IN A CHEMOTAXIS MODEL
    Mao, Xuan
    Li, Yuxiang
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024, 17 (04): : 1513 - 1528
  • [40] A general approach to transversal versions of Dirac-type theorems
    Gupta, Pranshu
    Hamann, Fabian
    Muyesser, Alp
    Parczyk, Olaf
    Sgueglia, Amedeo
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2023, 55 (06) : 2817 - 2839