We consider self-adjoint Dirac-type systems with rectangular matrix potentials on the interval [0, b), where 0<b≤∞.\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0<b\le \infty .$$\end{document} We present a new proof of the local Borg–Marchenko uniqueness theorem. The high-energy asymptotics of the Weyl–Titchmarsh functions and the local Borg–Marchenko uniqueness theorem are derived for locally smooth potentials at the right endpoint.
机构:
Shaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Shaanxi, Peoples R ChinaShaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Shaanxi, Peoples R China
Bai, Yu
Wei, Guangsheng
论文数: 0引用数: 0
h-index: 0
机构:
Shaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Shaanxi, Peoples R ChinaShaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Shaanxi, Peoples R China
机构:
Shaanxi Normal Univ, Sch Math & Stat, Xian, Peoples R China
Shaanxi Normal Univ, Sch Math & Stat, Xian 710062, Peoples R ChinaShaanxi Normal Univ, Sch Math & Stat, Xian, Peoples R China
Wei, Guangsheng
Zhang, Zhongfang
论文数: 0引用数: 0
h-index: 0
机构:
Shaanxi Normal Univ, Sch Math & Stat, Xian, Peoples R ChinaShaanxi Normal Univ, Sch Math & Stat, Xian, Peoples R China