The local Borg–Marchenko uniqueness theorem for Dirac-type systems with locally smooth at the right endpoint rectangular potentials

被引:0
|
作者
Tiezheng Li
Guangsheng Wei
机构
[1] Shaanxi Normal University,School of Mathematics and Statistics
来源
关键词
Weyl–Titchmarsh function; Dirac-type system; Rectangular potential; Borg–Marchenko uniqueness theorem; 34B20; 34E05; 34A55;
D O I
暂无
中图分类号
学科分类号
摘要
We consider self-adjoint Dirac-type systems with rectangular matrix potentials on the interval [0, b),  where 0<b≤∞.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<b\le \infty .$$\end{document} We present a new proof of the local Borg–Marchenko uniqueness theorem. The high-energy asymptotics of the Weyl–Titchmarsh functions and the local Borg–Marchenko uniqueness theorem are derived for locally smooth potentials at the right endpoint.
引用
收藏
相关论文
共 6 条