The local Borg-Marchenko uniqueness theorem for matrix-valued Schrödinger operators with locally smooth at the right endpoint potentials

被引:0
|
作者
Li, Tiezheng [1 ]
Wei, Guangsheng [1 ]
机构
[1] Shaanxi Normal Univ, Sch Math & Stat, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
Borg-Marchenko uniqueness theorem; matrix-valued Schrodinger operator; Weyl-Titchmarsh matrix-valued function; asymptotic high-energy expansion; INVERSE SPECTRAL THEORY; SCHRODINGER;
D O I
10.1080/00036811.2023.2290706
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new expression for the Weyl-Titchmarsh matrix-valued function of a self-adjoint matrix-valued Schrodinger operator defined on the interval $ [0,b) $ [0,b), where $ 0<b\leq \infty $ 0<b <=infinity. Let $ H_j=-\frac {d<^>2}{dx<^>2}I_m+Q_j $ Hj=-d2dx2Im+Qj, j=1,2, be two self-adjoint Schrodinger operators in $ L<^>2((0,b))<^>{m\times m} $ L2((0,b))mxm and $ Q_1=Q_2 $ Q1=Q2 a.e. on the interval $ [0,a] $ [0,a], where $ a\in (0,b) $ a is an element of(0,b). It is assumed that the potentials $ Q_1 $ Q1 and $ Q_2 $ Q2 are sufficiently smooth in the right neighborhood of the point a, where the right-hand derivatives of $ Q_1=Q_2 $ Q1=Q2 at a coincide up to a certain order. Let $ M_j(z) $ Mj(z) be the Weyl-Titchmarsh functions of $ H_j=-\frac {{\rm d}<^>2}{{\rm d}x<^>2}I_m+Q_j $ Hj=-d2dx2Im+Qj, j=1,2. As a specific application of this expression, we establish a high-energy asymptotic for the difference between $ M_1(z) $ M1(z) and $ M_2(z) $ M2(z). Besides, new proofs are given for the local Borg-Marchenko uniqueness theorem and the high-energy asymptotics of the Weyl-Titchmarsh functions.
引用
下载
收藏
页码:2213 / 2223
页数:11
相关论文
共 12 条