A Dirac-type theorem for 3-uniform hypergraphs

被引:148
|
作者
Rödl, V
Rucinski, A
Szemerédi, E
机构
[1] Emory Univ, Atlanta, GA 30322 USA
[2] Adam Mickiewicz Univ, Poznan, Poland
[3] Rutgers State Univ, New Brunswick, NJ 08903 USA
来源
COMBINATORICS PROBABILITY & COMPUTING | 2006年 / 15卷 / 1-2期
关键词
D O I
10.1017/S0963548305007042
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A Hamiltonian cycle in a 3-uniform hypergraph is a cyclic ordering of the vertices in which every three consecutive vertices form an edge. In this paper we prove an approximate and asymptotic version of an analogue of Dirac's celebrated theorem for graphs: for each gamma > 0 there exists no such that every 3-uniform hypergraph on n >= n(0) vertices, in which each pair of vertices belongs to at least (1/2 + gamma)n edges, contains a Hamiltonian cycle.
引用
收藏
页码:229 / 251
页数:23
相关论文
共 50 条
  • [1] A Dirac-Type Theorem for Uniform Hypergraphs
    Ma, Yue
    Hou, Xinmin
    Gao, Jun
    [J]. GRAPHS AND COMBINATORICS, 2024, 40 (04)
  • [2] Dirac-type conditions for hamiltonian paths and cycles in 3-uniform hypergraphs
    Roedl, Vojtech
    Rucinski, Andrzej
    Szemeredi, Endre
    [J]. ADVANCES IN MATHEMATICS, 2011, 227 (03) : 1225 - 1299
  • [3] An approximate Dirac-type theorem for k-uniform hypergraphs
    Vojtěch Rödl
    Endre Szemerédi
    Andrzej Ruciński
    [J]. Combinatorica, 2008, 28 : 229 - 260
  • [4] An approximate dirac-type theorem for k-uniform hypergraphs
    Rodl, Vojtech
    Rucinski, Andrzej
    Szemeredi, Endre
    [J]. COMBINATORICA, 2008, 28 (02) : 229 - 260
  • [5] A Dirac-type theorem for Berge cycles in random hypergraphs
    Clemens, Dennis
    Ehrenmueller, Julia
    Person, Yury
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (03): : 1 - 23
  • [6] Dirac-type results for loose Hamilton cycles in uniform hypergraphs
    Han, Hiep
    Schacht, Mathias
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2010, 100 (03) : 332 - 346
  • [7] Decompositions of complete 3-uniform hypergraphs into small 3-uniform hypergraphs
    Bryant, Darryn
    Herke, Sarada
    Maenhaut, Barbara
    Wannasit, Wannasiri
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2014, 60 : 227 - 254
  • [8] Decompositions of the 3-uniform hypergraphs Kv(3) into hypergraphs of a certain type
    Tao Feng
    Yan-xun Chang
    [J]. Science in China Series A: Mathematics, 2007, 50 : 1035 - 1044
  • [9] Decompositions of the 3-uniform hypergraphs Kv(3) into hypergraphs of a certain type
    Feng, Tao
    Chang, Yan-xun
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (07): : 1035 - 1044
  • [10] Dirac-type theorems in random hypergraphs
    Ferber, Asaf
    Kwan, Matthew
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2022, 155 : 318 - 357