Properly Colored Hamilton Cycles in Dirac-Type Hypergraphs

被引:1
|
作者
Antoniuk, Sylwia [1 ]
Kamcev, Nina [2 ]
Rucinski, Andrzej [1 ]
机构
[1] Adam Mickiewicz Univ, Poznan, Poland
[2] Univ Zagreb, Zagreb, Croatia
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2023年 / 30卷 / 01期
关键词
hypergraph; Hamilton cycle; Dirac?s theorem; absorbing method; GRAPHS; THRESHOLD;
D O I
10.37236/10651
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a robust variant of Dirac-type problems in k-uniform hypergraphs. For instance, we prove that if 1-1 is a k-uniform hypergraph with minimum codegree at least (21 +-y) n,-y > 0, and n is sufficiently large, then any edge coloring phi satisfying appropriate local constraints yields a properly colored tight Hamilton cycle in 1-1. Similar results for loose cycles are also shown.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] Dirac-type results for loose Hamilton cycles in uniform hypergraphs
    Han, Hiep
    Schacht, Mathias
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2010, 100 (03) : 332 - 346
  • [2] A Dirac-type theorem for Berge cycles in random hypergraphs
    Clemens, Dennis
    Ehrenmueller, Julia
    Person, Yury
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (03): : 1 - 23
  • [3] Dirac-type theorems for long Berge cycles in hypergraphs
    Kostochka, Alexandr
    Luo, Ruth
    McCourt, Grace
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2024, 168 : 159 - 191
  • [4] A Dirac-Type Result on Hamilton Cycles in Oriented Graphs
    Kelly, Luke
    Kuehn, Daniela
    Osthust, Deryk
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2008, 17 (05): : 689 - 709
  • [5] A Dirac-Type Theorem for Uniform Hypergraphs
    Ma, Yue
    Hou, Xinmin
    Gao, Jun
    [J]. GRAPHS AND COMBINATORICS, 2024, 40 (04)
  • [6] Counting Hamilton Cycles in Dirac Hypergraphs
    Asaf Ferber
    Liam Hardiman
    Adva Mond
    [J]. Combinatorica, 2023, 43 : 665 - 680
  • [7] Counting Hamilton Cycles in Dirac Hypergraphs
    Ferber, Asaf
    Hardiman, Liam
    Mond, Adva
    [J]. COMBINATORICA, 2023, 43 (4) : 665 - 680
  • [8] Counting Hamilton cycles in Dirac hypergraphs
    Glock, Stefan
    Gould, Stephen
    Joos, Felix
    Kuehn, Daniela
    Osthus, Deryk
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2021, 30 (04): : 631 - 653
  • [9] Dirac-type theorems in random hypergraphs
    Ferber, Asaf
    Kwan, Matthew
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2022, 155 : 318 - 357
  • [10] Dirac-type conditions for hamiltonian paths and cycles in 3-uniform hypergraphs
    Roedl, Vojtech
    Rucinski, Andrzej
    Szemeredi, Endre
    [J]. ADVANCES IN MATHEMATICS, 2011, 227 (03) : 1225 - 1299