Probabilistic type 2 Bernoulli and Euler polynomials

被引:4
|
作者
Chen, Li [1 ]
Dolgy, Dmitry, V [2 ]
Kim, Taekyun [3 ,4 ]
Kim, Dae San [4 ]
机构
[1] Xi An Univ Finance & Econ, Sch Math, Xian, Peoples R China
[2] Kwangwoon Univ, Kwangwoon Global Educ Ctr, Seoul 139701, South Korea
[3] Kwangwoon Univ, Dept Math, Seoul 139701, South Korea
[4] Xi An Technol Univ, Sch Sci, Xian 710021, Shaanxi, Peoples R China
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 06期
关键词
probabilistic type 2 Bernoulli polynomials; probabilistic type 2 Euler polynomials; probabilistic type 2 cosine-Bernoulli polynomials; probabilistic type 2 sine-Bernoulli polynomials; probabilistic type 2 cosine-Euler polynomials; probabilistic type 2 sine-Euler polynomials;
D O I
10.3934/math.2024696
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Assume that the moment -generating function of the random variable Y exists in a neighborhood of the origin. The aim of this paper is to investigate the probabilistic type 2 Bernoulli polynomials associated with Y and the probabilistic type 2 Euler polynomials associated with Y, along with the probabilistic type 2 cosine -Bernoulli polynomials associated with Y, the probabilistic type 2 sine -Bernoulli polynomials associated with Y, the probabilistic type 2 cosine-Euler polynomials associated with Y, and the probabilistic type 2 sine-Euler polynomials associated with Y. We deal with their properties, related identities and explicit expressions.
引用
收藏
页码:14312 / 14324
页数:13
相关论文
共 50 条
  • [1] Probabilistic Bernoulli and Euler Polynomials
    T. Kim
    D. S. Kim
    [J]. Russian Journal of Mathematical Physics, 2024, 31 : 94 - 105
  • [2] Probabilistic Bernoulli and Euler Polynomials
    Kim, T.
    Kim, D. S.
    [J]. RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2024, 31 (01) : 94 - 105
  • [3] Probabilistic degenerate Bernoulli and degenerate Euler polynomials
    Luo, Lingling
    Kim, Taekyun
    Kim, Dae San
    Ma, Yuankui
    [J]. MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2024, 30 (01) : 342 - 363
  • [4] Identities of Symmetry for Type 2 Bernoulli and Euler Polynomials
    Kim, Dae San
    Kim, Han Young
    Kim, Dojin
    Kim, Taekyun
    [J]. SYMMETRY-BASEL, 2019, 11 (05):
  • [5] Probabilistic Type 2 Poly-Bernoulli Polynomials
    Lee, Si Hyeon
    Chen, Li
    Kim, Wonjoo
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (03): : 2336 - 2348
  • [6] On type 2 degenerate Bernoulli and Euler polynomials of complex variable
    Kim, Taekyun
    Kim, Dae San
    Jang, Lee-Chae
    Kim, Han-Young
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [7] On type 2 degenerate Bernoulli and Euler polynomials of complex variable
    Taekyun Kim
    Dae San Kim
    Lee-Chae Jang
    Han-Young Kim
    [J]. Advances in Difference Equations, 2019
  • [8] Sheffer Type Degenerate Euler and Bernoulli Polynomials
    Kim, Taekyun
    Ryoo, Cheon Seoung
    [J]. FILOMAT, 2019, 33 (19) : 6173 - 6185
  • [9] A Note on Bernoulli and Euler Type Numbers and Polynomials
    Agyuz, Erkan
    [J]. INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2022, ICNAAM-2022, 2024, 3094
  • [10] On Appell sequences of polynomials of Bernoulli and Euler type
    Tempesta, Piergiulio
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 341 (02) : 1295 - 1310