Probabilistic type 2 Bernoulli and Euler polynomials

被引:4
|
作者
Chen, Li [1 ]
Dolgy, Dmitry, V [2 ]
Kim, Taekyun [3 ,4 ]
Kim, Dae San [4 ]
机构
[1] Xi An Univ Finance & Econ, Sch Math, Xian, Peoples R China
[2] Kwangwoon Univ, Kwangwoon Global Educ Ctr, Seoul 139701, South Korea
[3] Kwangwoon Univ, Dept Math, Seoul 139701, South Korea
[4] Xi An Technol Univ, Sch Sci, Xian 710021, Shaanxi, Peoples R China
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 06期
关键词
probabilistic type 2 Bernoulli polynomials; probabilistic type 2 Euler polynomials; probabilistic type 2 cosine-Bernoulli polynomials; probabilistic type 2 sine-Bernoulli polynomials; probabilistic type 2 cosine-Euler polynomials; probabilistic type 2 sine-Euler polynomials;
D O I
10.3934/math.2024696
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Assume that the moment -generating function of the random variable Y exists in a neighborhood of the origin. The aim of this paper is to investigate the probabilistic type 2 Bernoulli polynomials associated with Y and the probabilistic type 2 Euler polynomials associated with Y, along with the probabilistic type 2 cosine -Bernoulli polynomials associated with Y, the probabilistic type 2 sine -Bernoulli polynomials associated with Y, the probabilistic type 2 cosine-Euler polynomials associated with Y, and the probabilistic type 2 sine-Euler polynomials associated with Y. We deal with their properties, related identities and explicit expressions.
引用
收藏
页码:14312 / 14324
页数:13
相关论文
共 50 条
  • [21] Frobenious-Euler Type Polynomials Related to Hermite-Bernoulli Polynomials
    Kurt, Burak
    Simsek, Yilmaz
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [22] BARNES-TYPE DEGENERATE BERNOULLI AND EULER MIXED-TYPE POLYNOMIALS
    Kim, Taekyun
    Kim, Dae San
    Kwon, Hyuckin
    Mansour, Toufik
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 22 (07) : 1273 - 1287
  • [23] A Note on the Generalized Bernoulli and Euler Polynomials
    Bao Quoc Ta
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2013, 6 (04): : 405 - 412
  • [24] On identities involving Bernoulli and Euler polynomials
    Chang, CH
    Ha, CW
    FIBONACCI QUARTERLY, 2006, 44 (01): : 39 - 45
  • [25] BERNOULLI AND EULER NUMBERS AND ORTHOGONAL POLYNOMIALS
    CARLITZ, L
    DUKE MATHEMATICAL JOURNAL, 1959, 26 (01) : 1 - 15
  • [26] Bernoulli and Euler Polynomials in Clifford Analysis
    G.F. Hassan
    L. Aloui
    Advances in Applied Clifford Algebras, 2015, 25 : 351 - 376
  • [27] Bernoulli and Euler Polynomials in Two Variables
    Pita-Ruiz, Claudio
    KYUNGPOOK MATHEMATICAL JOURNAL, 2024, 64 (01): : 133 - 159
  • [28] Identities concerning Bernoulli and Euler polynomials
    Sun, Zhi-Wei
    Pan, Hao
    ACTA ARITHMETICA, 2006, 125 (01) : 21 - 39
  • [29] Triple convolution identities on Bernoulli polynomials and Euler polynomials
    Wang, Weiping
    Liu, Hongmei
    Jia, Cangzhi
    UTILITAS MATHEMATICA, 2016, 101 : 369 - 395
  • [30] NOTE ON IRREDUCIBILITY OF THE BERNOULLI AND EULER POLYNOMIALS
    CARLITZ, L
    DUKE MATHEMATICAL JOURNAL, 1952, 19 (03) : 475 - 481