Identities of Symmetry for Type 2 Bernoulli and Euler Polynomials

被引:8
|
作者
Kim, Dae San [1 ]
Kim, Han Young [2 ]
Kim, Dojin [3 ]
Kim, Taekyun [2 ]
机构
[1] Sogang Univ, Dept Math, Seoul 04107, South Korea
[2] Kwangwoon Univ, Dept Math, Seoul 01897, South Korea
[3] Pusan Natl Univ, Dept Math, Busan 46241, South Korea
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 05期
基金
新加坡国家研究基金会;
关键词
type 2 Bernoulli polynomials; type 2 Euler polynomials; identities of symmetry; Laplace distribution; STIRLING NUMBERS;
D O I
10.3390/sym11050613
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The main purpose of this paper is to give several identities of symmetry for type 2 Bernoulli and Euler polynomials by considering certain quotients of bosonic p-adic and fermionic p-adic integrals on Z(p), where p is an odd prime number. Indeed, they are symmetric identities involving type 2 Bernoulli polynomials and power sums of consecutive odd positive integers, and the ones involving type 2 Euler polynomials and alternating power sums of odd positive integers. Furthermore, we consider two random variables created from random variables having Laplace distributions and show their moments are given in terms of the type 2 Bernoulli and Euler numbers.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] ON THE IDENTITIES FOR THE BERNOULLI AND EULER POLYNOMIALS
    Kim, D. S.
    Kim, T.
    Lee, S. H.
    Lee, B.
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2013, 15 (03) : 413 - 423
  • [2] On identities involving Bernoulli and Euler polynomials
    Chang, CH
    Ha, CW
    [J]. FIBONACCI QUARTERLY, 2006, 44 (01): : 39 - 45
  • [3] Some identities for Bernoulli and Euler polynomials
    Wu, KJ
    Sun, ZW
    Pan, H
    [J]. FIBONACCI QUARTERLY, 2004, 42 (04): : 295 - 299
  • [4] Identities concerning Bernoulli and Euler polynomials
    Sun, Zhi-Wei
    Pan, Hao
    [J]. ACTA ARITHMETICA, 2006, 125 (01) : 21 - 39
  • [5] IDENTITIES ON THE BERNOULLI AND THE EULER NUMBERS AND POLYNOMIALS
    Kim, T.
    Kim, D. S.
    Bayad, A.
    Rim, S. -H.
    [J]. ARS COMBINATORIA, 2012, 107 : 455 - 463
  • [6] Identities involving Bernoulli and Euler polynomials
    Alzer, Horst
    Yakubovich, Semyon
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2018, 29 (01) : 43 - 61
  • [7] IDENTITIES FOR THE BERNOULLI AND EULER NUMBERS AND POLYNOMIALS
    Kim, T.
    Lee, B.
    Lee, S. H.
    Rim, S-H.
    [J]. ARS COMBINATORIA, 2012, 107 : 325 - 337
  • [8] Triple convolution identities on Bernoulli polynomials and Euler polynomials
    Wang, Weiping
    Liu, Hongmei
    Jia, Cangzhi
    [J]. UTILITAS MATHEMATICA, 2016, 101 : 369 - 395
  • [9] New identities involving Bernoulli and Euler polynomials
    Pan, H
    Sun, ZW
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (01) : 156 - 175
  • [10] General convolution identities for Bernoulli and Euler polynomials
    Dilcher, Karl
    Vignat, Christophe
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 435 (02) : 1478 - 1498