Identities of Symmetry for Type 2 Bernoulli and Euler Polynomials

被引:8
|
作者
Kim, Dae San [1 ]
Kim, Han Young [2 ]
Kim, Dojin [3 ]
Kim, Taekyun [2 ]
机构
[1] Sogang Univ, Dept Math, Seoul 04107, South Korea
[2] Kwangwoon Univ, Dept Math, Seoul 01897, South Korea
[3] Pusan Natl Univ, Dept Math, Busan 46241, South Korea
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 05期
基金
新加坡国家研究基金会;
关键词
type 2 Bernoulli polynomials; type 2 Euler polynomials; identities of symmetry; Laplace distribution; STIRLING NUMBERS;
D O I
10.3390/sym11050613
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The main purpose of this paper is to give several identities of symmetry for type 2 Bernoulli and Euler polynomials by considering certain quotients of bosonic p-adic and fermionic p-adic integrals on Z(p), where p is an odd prime number. Indeed, they are symmetric identities involving type 2 Bernoulli polynomials and power sums of consecutive odd positive integers, and the ones involving type 2 Euler polynomials and alternating power sums of odd positive integers. Furthermore, we consider two random variables created from random variables having Laplace distributions and show their moments are given in terms of the type 2 Bernoulli and Euler numbers.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] IDENTITIES OF SYMMETRY FOR THE HIGHER ORDER q-BERNOULLI POLYNOMIALS
    Son, Jin-Woo
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (05) : 1045 - 1073
  • [42] Symmetry identities of q-Bernoulli polynomials of the second kind
    Dae San Kim
    Taekyun Kim
    [J]. Indian Journal of Pure and Applied Mathematics, 2015, 46 : 85 - 90
  • [43] On the Identities of Symmetry for the Generalized Bernoulli Polynomials Attached to χ of Higher Order
    Kim, Taekyun
    Jang, Lee-Chae
    Kim, Young-Hee
    Hwang, Kyung-Won
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2009,
  • [44] SYMMETRY IDENTITIES OF q-BERNOULLI POLYNOMIALS OF THE SECOND KIND
    Kim, Dae San
    Kim, Taekyun
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2015, 46 (01): : 85 - 90
  • [45] Some combinatorial identities of the degenerate Bernoulli and Euler-Genocchi polynomials
    H. Belbachir
    S. Hadj-Brahim
    Y. Otmani
    M. Rachidi
    [J]. Indian Journal of Pure and Applied Mathematics, 2022, 53 : 425 - 442
  • [46] General convolution identities for Apostol-Bernoulli, Euler and Genocchi polynomials
    He, Yuan
    Kim, Taekyun
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (06): : 4780 - 4797
  • [47] ON EULER AND BERNOULLI POLYNOMIALS
    BRILLHAR.J
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1969, 234 : 45 - &
  • [48] Some combinatorial identities of the degenerate Bernoulli and Euler-Genocchi polynomials
    Belbachir, H.
    Hadj-Brahim, S.
    Otmani, Y.
    Rachidi, M.
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2022, 53 (02): : 425 - 442
  • [49] IDENTITIES OF SYMMETRY FOR TYPE 2 q-BERNOULLI POLYNOMIALS UNDER SYMMETRIC GROUP S3
    Kim, Taekyun
    Kim, Dae San
    Dolgy, Dmitriy, V
    Pyo, Sung-Soo
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2020, 21 (09) : 1973 - 1979
  • [50] Some Identities on Type 2 Degenerate Bernoulli Polynomials of the Second Kind
    Kim, Taekyun
    Jang, Lee-Chae
    Kim, Dae San
    Kim, Han-Young
    [J]. SYMMETRY-BASEL, 2020, 12 (04):