Probabilistic Bernoulli and Euler Polynomials

被引:12
|
作者
Kim, T. [1 ]
Kim, D. S. [2 ]
机构
[1] Kwangwoon Univ, Dept Math, Seoul 139701, South Korea
[2] Sogang Univ, Dept Math, Seoul 121742, South Korea
关键词
IDENTITIES; NUMBERS;
D O I
10.1134/S106192084010072
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let Y be a random variable whose moment generating function exists in a neighborhood of the origin. The aim of this paper is to introduce and study the probabilistic extension of Bernoulli polynomials and Euler polynomials, namely the probabilistic Bernoulli polynomials associated Y and the probabilistic Euler polynomials associated with Y. Also, we introduce the probabilistic r -Stirling numbers of the second associated Y, the probabilistic two variable Fubini polynomials associated Y, and the probabilistic poly -Bernoulli polynomials associated with Y. We obtain some properties, explicit expressions, certain identities and recurrence relations for those polynomials. As special cases of Y, we treat the gamma random variable with parameters alpha, beta > 0, the Poisson random variable with parameter alpha > 0, and the Bernoulli random variable with probability of success p.
引用
收藏
页码:94 / 105
页数:12
相关论文
共 50 条
  • [1] Probabilistic Bernoulli and Euler Polynomials
    T. Kim
    D. S. Kim
    [J]. Russian Journal of Mathematical Physics, 2024, 31 : 94 - 105
  • [2] Probabilistic type 2 Bernoulli and Euler polynomials
    Chen, Li
    Dolgy, Dmitry, V
    Kim, Taekyun
    Kim, Dae San
    [J]. AIMS MATHEMATICS, 2024, 9 (06): : 14312 - 14324
  • [3] Probabilistic degenerate Bernoulli and degenerate Euler polynomials
    Luo, Lingling
    Kim, Taekyun
    Kim, Dae San
    Ma, Yuankui
    [J]. MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2024, 30 (01) : 342 - 363
  • [4] Probabilistic Proofs of Some Relationships Between the Bernoulli and Euler Polynomials
    Srivastava, H. M.
    Vignat, Christophe
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2012, 5 (02): : 97 - 107
  • [5] ON EULER AND BERNOULLI POLYNOMIALS
    BRILLHAR.J
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1969, 234 : 45 - &
  • [7] A note on the Bernoulli and Euler polynomials
    Cheon, GS
    [J]. APPLIED MATHEMATICS LETTERS, 2003, 16 (03) : 365 - 368
  • [8] ON THE IDENTITIES FOR THE BERNOULLI AND EULER POLYNOMIALS
    Kim, D. S.
    Kim, T.
    Lee, S. H.
    Lee, B.
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2013, 15 (03) : 413 - 423
  • [9] Bernoulli and Euler Polynomials in Clifford Analysis
    G.F. Hassan
    L. Aloui
    [J]. Advances in Applied Clifford Algebras, 2015, 25 : 351 - 376
  • [10] BERNOULLI AND EULER NUMBERS AND ORTHOGONAL POLYNOMIALS
    CARLITZ, L
    [J]. DUKE MATHEMATICAL JOURNAL, 1959, 26 (01) : 1 - 15