Data-Efficient Inference of Nonlinear Oscillator Networks

被引:1
|
作者
Singhal, Bharat [1 ]
Vu, Minh [1 ]
Zeng, Shen [1 ]
Li, Jr-Shin [1 ]
机构
[1] Washington Univ, Dept Elect & Syst Engn, St Louis, MO 63110 USA
来源
IFAC PAPERSONLINE | 2023年 / 56卷 / 02期
基金
美国国家科学基金会;
关键词
Network Inference; Data-driven Modeling; Nonlinear Oscillators; Time-series Analysis; PHASE;
D O I
10.1016/j.ifacol.2023.10.879
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Decoding the connectivity structure of a network of nonlinear oscillators from measurement data is a difficult yet essential task for understanding and controlling network functionality. Several data-driven network inference algorithms have been presented, but the commonly considered premise of ample measurement data is often difficult to satisfy in practice. In this paper, we propose a data-efficient network inference technique by combining correlation statistics with the model-fitting procedure. The proposed approach can identify the network structure reliably in the case of limited measurement data. We compare the proposed method with existing techniques on a network of Stuart-Landau oscillators, oscillators describing circadian gene expression, and noisy experimental data obtained from Rossler Electronic Oscillator network.
引用
收藏
页码:10089 / 10094
页数:6
相关论文
共 50 条
  • [21] Data-Efficient Decentralized Visual SLAM
    Cieslewski, Titus
    Choudhary, Siddharth
    Scaramuzza, Davide
    2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2018, : 2466 - 2473
  • [22] Towards Data-Efficient Detection Transformers
    Wang, Wen
    Zhang, Jing
    Cao, Yang
    Shen, Yongliang
    Tao, Dacheng
    COMPUTER VISION, ECCV 2022, PT IX, 2022, 13669 : 88 - 105
  • [23] A survey on data-efficient algorithms in big data era
    Adadi, Amina
    JOURNAL OF BIG DATA, 2021, 8 (01)
  • [24] Optimizing Traffic Control with Model-Based Learning: A Pessimistic Approach to Data-Efficient Policy Inference
    Kunjir, Mayuresh
    Chawla, Sanjay
    Chandrasekar, Siddarth
    Jay, Devika
    Ravindran, Balaraman
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 1176 - 1187
  • [25] Scale-Equivariant Unrolled Neural Networks for Data-Efficient Accelerated MRI Reconstruction
    Gunel, Beliz
    Sahiner, Arda
    Desai, Arjun D.
    Chaudhari, Akshay S.
    Vasanawala, Shreyas
    Pilanci, Mert
    Pauly, John
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT VI, 2022, 13436 : 737 - 747
  • [26] E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials
    Batzner, Simon
    Musaelian, Albert
    Sun, Lixin
    Geiger, Mario
    Mailoa, Jonathan P.
    Kornbluth, Mordechai
    Molinari, Nicola
    Smidt, Tess E.
    Kozinsky, Boris
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [27] DATA-EFFICIENT DEEP REINFORCEMENT LEARNING WITH CONVOLUTION-BASED STATE ENCODER NETWORKS
    Fang, Qiang
    Xu, Xin
    Lan, Yixin
    Zhang, Yichuan
    Zeng, Yujun
    Tang, Tao
    INTERNATIONAL JOURNAL OF ROBOTICS & AUTOMATION, 2021, 36
  • [28] RG-GAN: Dynamic Regenerative Pruning for Data-Efficient Generative Adversarial Networks
    Saxena, Divya
    Cao, Jiannong
    Xu, Jiahao
    Kulshrestha, Tarun
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 5, 2024, : 4704 - 4712
  • [29] Intelligent Ultrasonic Systems for Material Texture Recognition using Data-Efficient Neural Networks
    Zhang, Xin
    Yu, Xinrui
    Saniie, Jafar
    INTERNATIONAL ULTRASONICS SYMPOSIUM (IEEE IUS 2021), 2021,
  • [30] E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials
    Simon Batzner
    Albert Musaelian
    Lixin Sun
    Mario Geiger
    Jonathan P. Mailoa
    Mordechai Kornbluth
    Nicola Molinari
    Tess E. Smidt
    Boris Kozinsky
    Nature Communications, 13