DATA-EFFICIENT DEEP REINFORCEMENT LEARNING WITH CONVOLUTION-BASED STATE ENCODER NETWORKS

被引:0
|
作者
Fang, Qiang [1 ]
Xu, Xin [1 ]
Lan, Yixin [1 ]
Zhang, Yichuan [1 ]
Zeng, Yujun [1 ]
Tang, Tao [1 ]
机构
[1] Natl Univ Def Technol, Coll Intelligence Sci & Technol, Changsha 410073, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep reinforcement learning; actor-critic learning; learning control; online learning; auto-encoder; REPRESENTATION;
D O I
10.2316/J.2021.206-0763
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Due to its ability to deal with high-dimensional end-to-end learning control problems, deep reinforcement learning (DRL) has received lots of research interests in recent years. However, the existing DRL approaches still face the challenge of data efficiency and the online learning control performance of DRL algorithms still needs to be improved. In this paper, we propose an online DRL approach with convolutional encoder networks. In the proposed approach, a cascaded learning control architecture is designed, which performs system state extraction and dimension reduction in the first stage and executes online reinforcement learning in the second stage. A convolutional network is used to encode features from the raw image data so that the algorithm can be implemented based on the encoded low-dimensional features, which can significantly improve the learning efficiency. Experimental results on two benchmark of learning control tasks show that the proposed approach outperforms previous end-to-end DRL approaches, which demonstrates the effectiveness and efficiency of the proposed approach.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Load Balancing for Communication Networks via Data-Efficient Deep Reinforcement Learning
    Wu, Di
    Kang, Jikun
    Xu, Yi Tian
    Li, Hang
    Li, Jimmy
    Chen, Xi
    Rivkin, Dmitriy
    Jenkin, Michael
    Lee, Taeseop
    Park, Intaik
    Liu, Xue
    Dudek, Gregory
    [J]. 2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [2] A Data-Efficient Training Method for Deep Reinforcement Learning
    Feng, Wenhui
    Han, Chongzhao
    Lian, Feng
    Liu, Xia
    [J]. ELECTRONICS, 2022, 11 (24)
  • [3] Data-Efficient Deep Reinforcement Learning with Symmetric Consistency
    Zhang, Xianchao
    Yang, Wentao
    Zhang, Xiaotong
    Liu, Han
    Wang, Guanglu
    [J]. 2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 2430 - 2436
  • [4] Data Based Optimal Control with Neural Networks and Data-Efficient Reinforcement Learning
    Runkler, Thomas A.
    Udluft, Steffen
    Duell, Siegmund
    [J]. AT-AUTOMATISIERUNGSTECHNIK, 2012, 60 (10) : 641 - 647
  • [5] Data-efficient Deep Reinforcement Learning for Vehicle Trajectory Control
    Frauenknecht, Bernd
    Ehlgen, Tobias
    Trimpe, Sebastian
    [J]. 2023 IEEE 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, ITSC, 2023, : 894 - 901
  • [6] A Data-Efficient Method of Deep Reinforcement Learning for Chinese Chess
    Xu, Changming
    Ding, Hengfeng
    Zhang, Xuejian
    Wang, Cong
    Yang, Hongji
    [J]. 2022 IEEE 22ND INTERNATIONAL CONFERENCE ON SOFTWARE QUALITY, RELIABILITY, AND SECURITY COMPANION, QRS-C, 2022, : 687 - 693
  • [7] Ensemble and Auxiliary Tasks for Data-Efficient Deep Reinforcement Learning
    Maulana, Muhammad Rizki
    Lee, Wee Sun
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, 2021, 12975 : 122 - 138
  • [8] Data-Efficient Hierarchical Reinforcement Learning
    Nachum, Ofir
    Gu, Shixiang
    Lee, Honglak
    Levine, Sergey
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [9] Data-Efficient Reinforcement Learning for Malaria Control
    Zou, Lixin
    [J]. PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 507 - 513
  • [10] Data-Efficient Deep Reinforcement Learning-Based Optimal Generation Control in DC Microgrids
    Fan, Zhen
    Zhang, Wei
    Liu, Wenxin
    [J]. IEEE SYSTEMS JOURNAL, 2024, 18 (01): : 426 - 437