Data-Efficient Inference of Nonlinear Oscillator Networks

被引:1
|
作者
Singhal, Bharat [1 ]
Vu, Minh [1 ]
Zeng, Shen [1 ]
Li, Jr-Shin [1 ]
机构
[1] Washington Univ, Dept Elect & Syst Engn, St Louis, MO 63110 USA
来源
IFAC PAPERSONLINE | 2023年 / 56卷 / 02期
基金
美国国家科学基金会;
关键词
Network Inference; Data-driven Modeling; Nonlinear Oscillators; Time-series Analysis; PHASE;
D O I
10.1016/j.ifacol.2023.10.879
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Decoding the connectivity structure of a network of nonlinear oscillators from measurement data is a difficult yet essential task for understanding and controlling network functionality. Several data-driven network inference algorithms have been presented, but the commonly considered premise of ample measurement data is often difficult to satisfy in practice. In this paper, we propose a data-efficient network inference technique by combining correlation statistics with the model-fitting procedure. The proposed approach can identify the network structure reliably in the case of limited measurement data. We compare the proposed method with existing techniques on a network of Stuart-Landau oscillators, oscillators describing circadian gene expression, and noisy experimental data obtained from Rossler Electronic Oscillator network.
引用
下载
收藏
页码:10089 / 10094
页数:6
相关论文
共 50 条
  • [31] Data-efficient Learning of Morphology and Controller for a Microrobot
    Liao, Thomas
    Wang, Grant
    Yang, Brian
    Lee, Rene
    Pister, Kristofer
    Levine, Sergey
    Calandra, Roberto
    2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2019, : 2488 - 2494
  • [32] Data-Efficient Reinforcement Learning for Malaria Control
    Zou, Lixin
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 507 - 513
  • [33] Data-efficient performance learning for configurable systems
    Jianmei Guo
    Dingyu Yang
    Norbert Siegmund
    Sven Apel
    Atrisha Sarkar
    Pavel Valov
    Krzysztof Czarnecki
    Andrzej Wasowski
    Huiqun Yu
    Empirical Software Engineering, 2018, 23 : 1826 - 1867
  • [34] Data-Efficient Domain Randomization With Bayesian Optimization
    Muratore, Fabio
    Eilers, Christian
    Gienger, Michael
    Peters, Jan
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02) : 911 - 918
  • [35] Pretraining Representations for Data-Efficient Reinforcement Learning
    Schwarzer, Max
    Rajkumar, Nitarshan
    Noukhovitch, Michael
    Anand, Ankesh
    Charlin, Laurent
    Hjelm, Devon
    Bachman, Philip
    Courville, Aaron
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [36] Data-Efficient Framework for Personalized Physiotherapy Feedback
    Lao, Bryan
    Tamei, Tomoya
    Ikeda, Kazushi
    FRONTIERS IN COMPUTER SCIENCE, 2020, 2
  • [37] Data-efficient performance learning for configurable systems
    Guo, Jianmei
    Yang, Dingyu
    Siegmund, Norbert
    Apel, Sven
    Sarkar, Atrisha
    Valov, Pavel
    Czarnecki, Krzysztof
    Wasowski, Andrzej
    Yu, Huiqun
    EMPIRICAL SOFTWARE ENGINEERING, 2018, 23 (03) : 1826 - 1867
  • [38] Decentralized Data-Efficient Quickest Change Detection
    Banerjee, Taposh
    Veeravalli, Venugopal V.
    Tartakovsky, Alexander
    2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 2587 - +
  • [39] Data-Efficient and Interpretable Tabular Anomaly Detection
    Chang, Chun-Hao
    Yoon, Jinsung
    Arik, Sercan O.
    Udell, Madeleine
    Pfister, Tomas
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 190 - 201
  • [40] Elliptic PDE learning is provably data-efficient
    Boulle, Nicolas
    Halikias, Diana
    Townsend, Alex
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (39)