DeePOF: A hybrid approach of deep convolutional neural network and friendship to Point-of-Interest (POI) recommendation system in location-based social networks

被引:0
|
作者
Safavi, Sadaf [1 ]
Jalali, Mehrdad [1 ,2 ]
机构
[1] Department of Computer Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
[2] Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von Helmholtz-4 Platz 1, Eggenstein-Leopoldshafen,76344, Germany
关键词
Location - Convolution - Deep neural networks;
D O I
暂无
中图分类号
学科分类号
摘要
Today, millions of active users spend a percentage of their time on location-based social networks like Yelp and Gowalla and share their rich information. They can easily learn about their friends' behaviors and where they are visiting and be influenced by their style. As a result, the existence of personalized recommendations and the investigation of meaningful features of users and Point of Interests (POIs), given the challenges of rich contents and data sparsity, is a substantial task to accurately recommend the POIs and interests of users in location-based social networks (LBSNs). This work proposes a novel pipeline of POI recommendations named DeePOF based on deep learning and the convolutional neural network. This approach only takes into consideration the influence of the most similar pattern of friendship instead of the friendship of all users. The mean-shift clustering technique is used to detect similarity. The most similar friends' spatial and temporal features are fed into our deep CNN technique. The output of several proposed layers can predict latitude and longitude and the ID of subsequent appropriate places, and then using the friendship interval of a similar pattern, the lowest distance venues are chosen. This combination method is estimated on two popular datasets of LBSNs. Experimental results demonstrate that analyzing similar friendships could make recommendations more accurate and the suggested model for recommending a sequence of top-k POIs outperforms state-of-the-art approaches. © 2022 The Authors. Concurrency and Computation: Practice and Experience published by John Wiley & Sons, Ltd.
引用
收藏
相关论文
共 50 条
  • [41] Next POI Recommendation Based on Location Interest Mining with Recurrent Neural Networks
    Chen, Ming
    Li, Wen-Zhong
    Qian, Lin
    Lu, Sang-Lu
    Chen, Dao-Xu
    [J]. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2020, 35 (03) : 603 - 616
  • [42] Next POI Recommendation Based on Location Interest Mining with Recurrent Neural Networks
    Ming Chen
    Wen-Zhong Li
    Lin Qian
    Sang-Lu Lu
    Dao-Xu Chen
    [J]. Journal of Computer Science and Technology, 2020, 35 : 603 - 616
  • [43] Discovering Memory-Based Preferences for POI Recommendation in Location-Based Social Networks
    Gan, Mingxin
    Gao, Ling
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2019, 8 (06)
  • [44] A POI group recommendation method in location-based social networks based on user influence
    Sojahrood, Zahra Bahari
    Taleai, Mohammad
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2021, 171
  • [45] Time and Location Aware Points of Interest Recommendation in Location-Based Social Networks
    Qian, Tie-Yun
    Liu, Bei
    Hong, Liang
    You, Zhen-Ni
    [J]. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2018, 33 (06) : 1219 - 1230
  • [46] Time and Location Aware Points of Interest Recommendation in Location-Based Social Networks
    Tie-Yun Qian
    Bei Liu
    Liang Hong
    Zhen-Ni You
    [J]. Journal of Computer Science and Technology, 2018, 33 : 1219 - 1230
  • [47] Learning Recency and Inferring Associations in Location Based Social Network for Emotion Induced Point-of-Interest Recommendation
    Logesh, R.
    Subramaniyaswamy, V
    [J]. JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2017, 33 (06) : 1629 - 1647
  • [48] Location perspective-based neighborhood-aware POI recommendation in location-based social networks
    Guo, Lei
    Wen, Yufei
    Liu, Fangai
    [J]. SOFT COMPUTING, 2019, 23 (22) : 11935 - 11945
  • [49] Location perspective-based neighborhood-aware POI recommendation in location-based social networks
    Lei Guo
    Yufei Wen
    Fangai Liu
    [J]. Soft Computing, 2019, 23 : 11935 - 11945
  • [50] A Joint Deep Recommendation Framework for Location-Based Social Networks
    Tal, Omer
    Liu, Yang
    [J]. COMPLEXITY, 2019, 2019