A Joint Deep Recommendation Framework for Location-Based Social Networks

被引:9
|
作者
Tal, Omer [1 ]
Liu, Yang [1 ]
机构
[1] Wilfrid Laurier Univ, Dept Phys & Comp Sci, Waterloo, ON, Canada
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
461.4 Ergonomics and Human Factors Engineering - 723.5 Computer Applications - 922.2 Mathematical Statistics;
D O I
10.1155/2019/2926749
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Location-based social networks, such as Yelp and Tripadvisor, which allow users to share experiences about visited locations with their friends, have gained increasing popularity in recent years. However, as more locations become available, the need for accurate systems able to present personalized suggestions arises. By providing such service, point-of-interest recommender systems have attracted much interest from different societies, leading to improved methods and techniques. Deep learning provides an exciting opportunity to further enhance these systems, by utilizing additional data to understand users' preferences better. In this work we propose Textual and Contextual Embedding-based Neural Recommender (TCENR), a deep framework that employs contextual data, such as users' social networks and locations' geo-spatial data, along with textual reviews. To make best use of these inputs, we utilize multiple types of deep neural networks that are best suited for each type of data. TCENR adopts the popular multilayer perceptrons to analyze historical activities in the system, while the learning of textual reviews is achieved using two variations of the suggested framework. One is based on convolutional neural networks to extract meaningful data from textual reviews, and the other employs recurrent neural networks. Our proposed network is evaluated over the Yelp dataset and found to outperform multiple state-of-the-art baselines in terms of accuracy, mean squared error, precision, and recall. In addition, we provide further insight into the design selections and hyperparameters of our recommender system, hoping to shed light on the benefit of deep learning for location-based social network recommendation.
引用
下载
收藏
页数:11
相关论文
共 50 条
  • [1] Location recommendation on location-based social networks
    College of Electronic Science and Engineering, National University of Defense Technology, Changsha
    410073, China
    Guofang Keji Daxue Xuebao, 5 (1-8):
  • [2] Personalized Location Recommendation on Location-based Social Networks
    Gao, Huiji
    Tang, Jiliang
    Liu, Huan
    PROCEEDINGS OF THE 8TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'14), 2014, : 399 - 400
  • [3] Personalized location recommendation for location-based social networks
    Xu, Qianfang
    Wang, Jiachun
    Xiao, Bo
    2017 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA (ICCC), 2017, : 632 - 637
  • [4] A Unified Point-of-Interest Recommendation Framework in Location-Based Social Networks
    Cheng, Chen
    Yang, Haiqin
    King, Irwin
    Lyu, Michael R.
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2016, 8 (01)
  • [5] Friend Recommendation in Location-based Social Networks via Deep Pairwise Learning
    Rafailidis, Dimitrios
    Crestani, Fabio
    2018 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM), 2018, : 421 - 428
  • [6] POI Recommendation Method Using Deep Learning in Location-Based Social Networks
    Liu, Yang
    Wu, An-bo
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2021, 2021
  • [7] Behavior-based location recommendation on location-based social networks
    Rahimi, Seyyed Mohammadreza
    Far, Behrouz
    Wang, Xin
    GEOINFORMATICA, 2020, 24 (03) : 477 - 504
  • [8] Behavior-Based Location Recommendation on Location-Based Social Networks
    Rahimi, Seyyed Mohammadreza
    Wang, Xin
    Far, Behrouz
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2017, PT II, 2017, 10235 : 273 - 285
  • [9] Behavior-based location recommendation on location-based social networks
    Seyyed Mohammadreza Rahimi
    Behrouz Far
    Xin Wang
    GeoInformatica, 2020, 24 : 477 - 504
  • [10] Adaptive Location Recommendation Algorithm Based on Location-Based Social Networks
    Lin, Kunhui
    Wang, Jingjin
    Zhang, Zhongnan
    Chen, Yating
    Xu, Zhentuan
    10TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE & EDUCATION (ICCSE 2015), 2015, : 137 - 142