Location perspective-based neighborhood-aware POI recommendation in location-based social networks

被引:31
|
作者
Guo, Lei [1 ]
Wen, Yufei [2 ]
Liu, Fangai [3 ]
机构
[1] Shandong Normal Univ, Sch Business, Postdoctoral Res Stn Management Sci & Engn, Jinan, Shandong, Peoples R China
[2] Shandong Normal Univ, Sch Business, Jinan, Shandong, Peoples R China
[3] Shandong Normal Univ, Sch Informat Sci & Engn, Jinan, Shandong, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Social network; Point-of-interest; Weighted matrix factorization; Implicit feedback;
D O I
10.1007/s00500-018-03748-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As an effective way to help users find attractive locations and meet their individual needs, point-of-interest (POI) recommendation has become an important application in location-based social networks (LBSNs). Although the geographical influence has been reported as an effective factor for improving POI recommendation accuracy, previous work mainly models it from the user perspective instead of location perspective. Intuitively, neighboring POIs tend to be visited by similar users, which implies that modeling geographical relationships from a location perspective can simulate users' behavior more reasonably. Moreover, different from traditional recommendation problems, users in LBSNs often express their interests only by checking in different POIs, which is a kind of implicit feedback. In other words, we can easily get the POIs that the users have visited, but it is hard to get the ones that the users do not like. We cannot use a common approach to distinguish these negative values directly. Based on the above observations, this work concentrates on exploiting the geographical relationships among POIs from a location perspective for implicit problem, where a location neighborhood-aware weighted probabilistic matrix factorization is proposed (L-WMF). To be specific, the weighted probabilistic matrix factorization (WMF) that can deal with implicit feedback is first introduced as our basic POI recommendation method. Then, we incorporate the geographical relationships among POIs into the WMF as the regularization terms to exploit the geographical characteristics from a location perspective. Finally, we conduct several experiments to evaluate our L-WMF method on two real-world datasets, and the experimental results indicate that the L-WMF is more effective and can reach better performance than other related methods.
引用
收藏
页码:11935 / 11945
页数:11
相关论文
共 50 条
  • [1] Location perspective-based neighborhood-aware POI recommendation in location-based social networks
    Lei Guo
    Yufei Wen
    Fangai Liu
    Soft Computing, 2019, 23 : 11935 - 11945
  • [2] Location Regularization-Based POI Recommendation in Location-Based Social Networks
    Guo, Lei
    Jiang, Haoran
    Wang, Xinhua
    INFORMATION, 2018, 9 (04)
  • [3] Personalized POI Groups Recommendation in Location-Based Social Networks
    Yu, Fei
    Li, Zhijun
    Jiang, Shouxu
    Yang, Xiaofei
    WEB AND BIG DATA, APWEB-WAIM 2017, PT II, 2017, 10367 : 114 - 123
  • [4] Location recommendation on location-based social networks
    College of Electronic Science and Engineering, National University of Defense Technology, Changsha
    410073, China
    Guofang Keji Daxue Xuebao, 5 (1-8):
  • [5] A HITS-based POI Recommendation Algorithm for Location-Based Social Networks
    Long, Xuelian
    Joshi, James
    2013 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM), 2013, : 648 - 653
  • [6] iTourSPOT: a context-aware framework for next POI recommendation in location-based social networks
    Wan, Lin
    Wang, Han
    Hong, Yuming
    Li, Ran
    Chen, Wei
    Huang, Zhou
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2022, 15 (01) : 1614 - 1636
  • [7] Friend and POI recommendation based on social trust cluster in location-based social networks
    Jinghua Zhu
    Chao Wang
    Xu Guo
    Qian Ming
    Jinbao Li
    Yong Liu
    EURASIP Journal on Wireless Communications and Networking, 2019
  • [8] POI Recommendation of Location-Based Social Networks Using Tensor Factorization
    Liao Guoqiong
    Jiang Shan
    Zhou, Zhiheng
    Wan Changxuan
    Liu Xiping
    2018 19TH IEEE INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT (MDM 2018), 2018, : 116 - 124
  • [9] Discovering Travel Community for POI Recommendation on Location-Based Social Networks
    Tang, Lei
    Cai, Dandan
    Duan, Zongtao
    Ma, Junchi
    Han, Meng
    Wang, Hanbo
    COMPLEXITY, 2019,
  • [10] Friend and POI recommendation based on social trust cluster in location-based social networks
    Zhu, Jinghua
    Wang, Chao
    Guo, Xu
    Ming, Qian
    Li, Jinbao
    Liu, Yong
    EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2019, 2019 (1)