Location perspective-based neighborhood-aware POI recommendation in location-based social networks

被引:31
|
作者
Guo, Lei [1 ]
Wen, Yufei [2 ]
Liu, Fangai [3 ]
机构
[1] Shandong Normal Univ, Sch Business, Postdoctoral Res Stn Management Sci & Engn, Jinan, Shandong, Peoples R China
[2] Shandong Normal Univ, Sch Business, Jinan, Shandong, Peoples R China
[3] Shandong Normal Univ, Sch Informat Sci & Engn, Jinan, Shandong, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Social network; Point-of-interest; Weighted matrix factorization; Implicit feedback;
D O I
10.1007/s00500-018-03748-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As an effective way to help users find attractive locations and meet their individual needs, point-of-interest (POI) recommendation has become an important application in location-based social networks (LBSNs). Although the geographical influence has been reported as an effective factor for improving POI recommendation accuracy, previous work mainly models it from the user perspective instead of location perspective. Intuitively, neighboring POIs tend to be visited by similar users, which implies that modeling geographical relationships from a location perspective can simulate users' behavior more reasonably. Moreover, different from traditional recommendation problems, users in LBSNs often express their interests only by checking in different POIs, which is a kind of implicit feedback. In other words, we can easily get the POIs that the users have visited, but it is hard to get the ones that the users do not like. We cannot use a common approach to distinguish these negative values directly. Based on the above observations, this work concentrates on exploiting the geographical relationships among POIs from a location perspective for implicit problem, where a location neighborhood-aware weighted probabilistic matrix factorization is proposed (L-WMF). To be specific, the weighted probabilistic matrix factorization (WMF) that can deal with implicit feedback is first introduced as our basic POI recommendation method. Then, we incorporate the geographical relationships among POIs into the WMF as the regularization terms to exploit the geographical characteristics from a location perspective. Finally, we conduct several experiments to evaluate our L-WMF method on two real-world datasets, and the experimental results indicate that the L-WMF is more effective and can reach better performance than other related methods.
引用
收藏
页码:11935 / 11945
页数:11
相关论文
共 50 条
  • [21] Discovering Memory-Based Preferences for POI Recommendation in Location-Based Social Networks
    Gan, Mingxin
    Gao, Ling
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2019, 8 (06)
  • [22] POI Recommendation Method Using Deep Learning in Location-Based Social Networks
    Liu, Yang
    Wu, An-bo
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2021, 2021
  • [23] Group Oriented Trust-aware Location Recommendation for Location-based Social Networks
    Teoman, Huseyin Alper
    Karagoz, Pinar
    37TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, 2022, : 1779 - 1788
  • [24] Exploiting Context Graph Attention for POI Recommendation in Location-Based Social Networks
    Zhang, Siyuan
    Cheng, Hong
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2018, PT I, 2018, 10827 : 83 - 99
  • [25] Behavior-based location recommendation on location-based social networks
    Rahimi, Seyyed Mohammadreza
    Far, Behrouz
    Wang, Xin
    GEOINFORMATICA, 2020, 24 (03) : 477 - 504
  • [26] Behavior-Based Location Recommendation on Location-Based Social Networks
    Rahimi, Seyyed Mohammadreza
    Wang, Xin
    Far, Behrouz
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2017, PT II, 2017, 10235 : 273 - 285
  • [27] Behavior-based location recommendation on location-based social networks
    Seyyed Mohammadreza Rahimi
    Behrouz Far
    Xin Wang
    GeoInformatica, 2020, 24 : 477 - 504
  • [28] Adaptive Location Recommendation Algorithm Based on Location-Based Social Networks
    Lin, Kunhui
    Wang, Jingjin
    Zhang, Zhongnan
    Chen, Yating
    Xu, Zhentuan
    10TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE & EDUCATION (ICCSE 2015), 2015, : 137 - 142
  • [29] Trust-aware location recommendation in location-based social networks: A graph-based approach
    Canturk, Deniz
    Karagoz, Pinar
    Kim, Sang-Wook
    Toroslu, Ismail Hakki
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 213
  • [30] Trust-aware spatial–temporal feature estimation for next POI recommendation in location-based social networks
    Malika Acharya
    Krishna Kumar Mohbey
    Social Network Analysis and Mining, 13