A survey on deep reinforcement learning approaches for traffic signal control

被引:2
|
作者
Zhao, Haiyan [1 ]
Dong, Chengcheng [1 ]
Cao, Jian [2 ]
Chen, Qingkui [1 ]
机构
[1] Univ Shanghai Sci & Technol, Shanghai Key Lab Modern Opt Syst, Minist Educ, Shanghai 200093, Peoples R China
[2] Shanghai Jiao Tong Univ, Dept Comp Sci & Engn, Shanghai 200030, Peoples R China
关键词
Urban traffic; Traffic signal control; Deep reinforcement learning; Multi-agent reinforcement learning; POLICY-GRADIENT; NETWORK; LIGHTS;
D O I
10.1016/j.engappai.2024.108100
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the domain of complex urban traffic networks, real-time Traffic Signal Control (TSC) serves as a pivotal strategy for mitigating congestion. Coordinating signal control across multiple intersections involves considerable complexity. Deep Reinforcement Learning (DRL) has emerged as a robust solution. In recent years, there has been rapid advancement in TSC methods, with numerous researchers employing various novel DRL methodologies. Yet, existing surveys lack timeliness and universality in capturing the latest research. There is a notable gap in current research surveys with respect to the latest developments in TSC. Therefore, the focus of this paper lies in analyzing the most recent papers from the past five years, with the aim to provide a comprehensive and multi -dimensional review of the evolution of DRL in TSC. The survey categorizes current research based on model setups, utilized algorithms, and application scenarios. Finally, this paper highlights potential directions for future TSC research.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Parallel Reinforcement Learning for Traffic Signal Control
    Mannion, Patrick
    Duggan, Jim
    Howley, Enda
    6TH INTERNATIONAL CONFERENCE ON AMBIENT SYSTEMS, NETWORKS AND TECHNOLOGIES (ANT-2015), THE 5TH INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY INFORMATION TECHNOLOGY (SEIT-2015), 2015, 52 : 956 - 961
  • [42] Reinforcement learning in neurofuzzy traffic signal control
    Bingham, E
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2001, 131 (02) : 232 - 241
  • [43] Reinforcement Learning with Explainability for Traffic Signal Control
    Rizzo, Stefano Giovanni
    Vantini, Giovanna
    Chawla, Sanjay
    2019 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2019, : 3567 - 3572
  • [44] Traffic Signal Control Using Reinforcement Learning
    Jadhao, Namrata S.
    Jadhao, Ashish S.
    2014 FOURTH INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS AND NETWORK TECHNOLOGIES (CSNT), 2014, : 1130 - 1135
  • [45] Traffic Signal Timing via Deep Reinforcement Learning
    Li Li
    Yisheng Lv
    Fei-Yue Wang
    IEEE/CAA Journal of Automatica Sinica, 2016, 3 (03) : 247 - 247
  • [46] Traffic Signal Timing via Deep Reinforcement Learning
    Li, Li
    Lv, Yisheng
    Wang, Fei-Yue
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2016, 3 (03) : 247 - 254
  • [47] Traffic signal timing via deep reinforcement learning
    Li L.
    Lv Y.
    Wang F.-Y.
    Li, Li (li-li@tsinghua.edu.cn), 1600, Institute of Electrical and Electronics Engineers Inc. (03): : 247 - 254
  • [48] Framework for Control and Deep Reinforcement Learning in Traffic
    Wu, Cathy
    Parvate, Kanaad
    Kheterpal, Nishant
    Dickstein, Leah
    Mehta, Ankur
    Vinitsky, Eugene
    Bayen, Alexandre M.
    2017 IEEE 20TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2017,
  • [49] Leveraging Deep Reinforcement Learning for Traffic Engineering: A Survey
    Xiao, Yang
    Liu, Jun
    Wu, Jiawei
    Ansari, Nirwan
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2021, 23 (04): : 2064 - 2097
  • [50] A Multi-phase Intersection Traffic Signal Control Strategy with Deep Reinforcement Learning
    Li, Congcong
    Li, Yuan
    Liu, Guihua
    2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 959 - 964