Leveraging Deep Reinforcement Learning for Traffic Engineering: A Survey

被引:51
|
作者
Xiao, Yang [1 ]
Liu, Jun [1 ]
Wu, Jiawei [1 ]
Ansari, Nirwan [2 ]
机构
[1] Beijing Univ Posts & Telecommun, Intelligent Percept & Comp Res Ctr, Sch Artificial Intelligence, Beijing 100876, Peoples R China
[2] New Jersey Inst Technol, Dept Elect & Comp Engn, Newark, NJ 07102 USA
来源
关键词
Wireless networks; Routing; Optimization; Reinforcement learning; Tutorials; Supervised learning; Wireless sensor networks; Deep reinforcement learning; traffic engineering; routing optimization; congestion control; resource management; TCP CONGESTION CONTROL; SPECTRUM ASSIGNMENT; RESOURCE-MANAGEMENT; WIRELESS NETWORKS; CELLULAR NETWORK; NEURAL-NETWORKS; EDGE; MULTIPATH; FRAMEWORK; ALGORITHM;
D O I
10.1109/COMST.2021.3102580
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
After decades of unprecedented development, modern networks have evolved far beyond expectations in terms of scale and complexity. In many cases, traditional traffic engineering (TE) approaches fail to address the quality of service (QoS) requirements of modern networks. In recent years, deep reinforcement learning (DRL) has proved to be a feasible and effective solution for autonomously controlling and managing complex systems. Massive growth in the use of DRL applications in various domains is beginning to benefit the communications industry. In this paper, we firstly provide a comprehensive overview of DRL-based TE. Then, we present a detailed literature review on applications of DRL for TE including three fundamental issues: routing optimization, congestion control, and resource management. Finally, we discuss our insights into the challenges and future research perspectives of DRL-based TE.
引用
收藏
页码:2064 / 2097
页数:34
相关论文
共 50 条
  • [1] Distributed and Adaptive Traffic Engineering with Deep Reinforcement Learning
    Geng, Nan
    Xu, Mingwei
    Yang, Yuan
    Liu, Chenyi
    Yang, Jiahai
    Li, Qi
    Zhang, Shize
    2021 IEEE/ACM 29TH INTERNATIONAL SYMPOSIUM ON QUALITY OF SERVICE (IWQOS), 2021,
  • [2] A Survey on Deep Reinforcement Learning for Traffic Signal Control
    Miao, Wei
    Li, Long
    Wang, Zhiwen
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 1092 - 1097
  • [3] On Deep Reinforcement Learning for Traffic Engineering in SD-WAN
    Troia, Sebastian
    Sapienza, Federico
    Vare, Leonardo
    Maier, Guido
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (07) : 2198 - 2212
  • [4] Leveraging reinforcement learning for dynamic traffic control: A survey and challenges for field implementation
    Han, Yu
    Wang, Meng
    Leclercq, Ludovic
    COMMUNICATIONS IN TRANSPORTATION RESEARCH, 2023, 3
  • [5] A survey of reinforcement and deep reinforcement learning for coordination in intelligent traffic light control
    Aicha Saadi
    Noureddine Abghour
    Zouhair Chiba
    Khalid Moussaid
    Saadi Ali
    Journal of Big Data, 12 (1)
  • [6] A survey on deep reinforcement learning approaches for traffic signal control
    Zhao, Haiyan
    Dong, Chengcheng
    Cao, Jian
    Chen, Qingkui
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [7] Power-Aware Traffic Engineering via Deep Reinforcement Learning
    Pan, Tian
    Peng, Xiaoyu
    Bian, Zizheng
    Lin, Xingchen
    Song, Enge
    Huang, Tao
    IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (IEEE INFOCOM 2019 WKSHPS), 2019, : 1009 - 1010
  • [8] Enabling efficient routing for traffic engineering in SDN with Deep Reinforcement Learning
    Pei, Xinglong
    Sun, Penghao
    Hu, Yuxiang
    Li, Dan
    Chen, Bo
    Tian, Le
    COMPUTER NETWORKS, 2024, 241
  • [9] A survey on deep learning and deep reinforcement learning in robotics with a tutorial on deep reinforcement learning
    Morales, Eduardo F.
    Murrieta-Cid, Rafael
    Becerra, Israel
    Esquivel-Basaldua, Marco A.
    INTELLIGENT SERVICE ROBOTICS, 2021, 14 (05) : 773 - 805
  • [10] A survey on deep learning and deep reinforcement learning in robotics with a tutorial on deep reinforcement learning
    Eduardo F. Morales
    Rafael Murrieta-Cid
    Israel Becerra
    Marco A. Esquivel-Basaldua
    Intelligent Service Robotics, 2021, 14 : 773 - 805