Leveraging Deep Reinforcement Learning for Traffic Engineering: A Survey

被引:51
|
作者
Xiao, Yang [1 ]
Liu, Jun [1 ]
Wu, Jiawei [1 ]
Ansari, Nirwan [2 ]
机构
[1] Beijing Univ Posts & Telecommun, Intelligent Percept & Comp Res Ctr, Sch Artificial Intelligence, Beijing 100876, Peoples R China
[2] New Jersey Inst Technol, Dept Elect & Comp Engn, Newark, NJ 07102 USA
来源
关键词
Wireless networks; Routing; Optimization; Reinforcement learning; Tutorials; Supervised learning; Wireless sensor networks; Deep reinforcement learning; traffic engineering; routing optimization; congestion control; resource management; TCP CONGESTION CONTROL; SPECTRUM ASSIGNMENT; RESOURCE-MANAGEMENT; WIRELESS NETWORKS; CELLULAR NETWORK; NEURAL-NETWORKS; EDGE; MULTIPATH; FRAMEWORK; ALGORITHM;
D O I
10.1109/COMST.2021.3102580
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
After decades of unprecedented development, modern networks have evolved far beyond expectations in terms of scale and complexity. In many cases, traditional traffic engineering (TE) approaches fail to address the quality of service (QoS) requirements of modern networks. In recent years, deep reinforcement learning (DRL) has proved to be a feasible and effective solution for autonomously controlling and managing complex systems. Massive growth in the use of DRL applications in various domains is beginning to benefit the communications industry. In this paper, we firstly provide a comprehensive overview of DRL-based TE. Then, we present a detailed literature review on applications of DRL for TE including three fundamental issues: routing optimization, congestion control, and resource management. Finally, we discuss our insights into the challenges and future research perspectives of DRL-based TE.
引用
收藏
页码:2064 / 2097
页数:34
相关论文
共 50 条
  • [41] A Deep Reinforcement Learning Approach to Traffic Signal Control
    Razack, Aquib Junaid
    Ajith, Vysyakh
    Gupta, Rajiv
    2021 IEEE CONFERENCE ON TECHNOLOGIES FOR SUSTAINABILITY (SUSTECH2021), 2021,
  • [42] Traffic Signal Timing via Deep Reinforcement Learning
    Li Li
    Yisheng Lv
    Fei-Yue Wang
    IEEE/CAA Journal of Automatica Sinica, 2016, 3 (03) : 247 - 247
  • [43] Traffic Signal Timing via Deep Reinforcement Learning
    Li, Li
    Lv, Yisheng
    Wang, Fei-Yue
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2016, 3 (03) : 247 - 254
  • [44] A survey and critique of multiagent deep reinforcement learning
    Pablo Hernandez-Leal
    Bilal Kartal
    Matthew E. Taylor
    Autonomous Agents and Multi-Agent Systems, 2019, 33 : 750 - 797
  • [45] Cellular Network Traffic Scheduling with Deep Reinforcement Learning
    Chinchali, Sandeep
    Hu, Pan
    Chu, Tianshu
    Sharma, Manu
    Bansal, Manu
    Misra, Rakesh
    Pavone, Marco
    Katti, Sachin
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 766 - 774
  • [46] Deep Reinforcement Learning for Traffic Light Timing Optimization
    Wang, Bin
    He, Zhengkun
    Sheng, Jinfang
    Chen, Yu
    PROCESSES, 2022, 10 (11)
  • [47] Traffic signal timing via deep reinforcement learning
    Li L.
    Lv Y.
    Wang F.-Y.
    Li, Li (li-li@tsinghua.edu.cn), 1600, Institute of Electrical and Electronics Engineers Inc. (03): : 247 - 254
  • [48] Deep Reinforcement Learning for Autonomous Traffic Light Control
    Garg, Deepeka
    Chli, Maria
    Vogiatzis, George
    2018 3RD IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION ENGINEERING (ICITE), 2018, : 214 - 218
  • [49] Deep Reinforcement Learning for Traffic Signal Control: A Review
    Rasheed, Faizan
    Yau, Kok-Lim Alvin
    Noor, Rafidah Md.
    Wu, Celimuge
    Low, Yeh-Ching
    IEEE ACCESS, 2020, 8 : 208016 - 208044
  • [50] Robust Deep Reinforcement Learning for Traffic Signal Control
    Kai Liang Tan
    Anuj Sharma
    Soumik Sarkar
    Journal of Big Data Analytics in Transportation, 2020, 2 (3): : 263 - 274