A survey on deep reinforcement learning approaches for traffic signal control

被引:2
|
作者
Zhao, Haiyan [1 ]
Dong, Chengcheng [1 ]
Cao, Jian [2 ]
Chen, Qingkui [1 ]
机构
[1] Univ Shanghai Sci & Technol, Shanghai Key Lab Modern Opt Syst, Minist Educ, Shanghai 200093, Peoples R China
[2] Shanghai Jiao Tong Univ, Dept Comp Sci & Engn, Shanghai 200030, Peoples R China
关键词
Urban traffic; Traffic signal control; Deep reinforcement learning; Multi-agent reinforcement learning; POLICY-GRADIENT; NETWORK; LIGHTS;
D O I
10.1016/j.engappai.2024.108100
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the domain of complex urban traffic networks, real-time Traffic Signal Control (TSC) serves as a pivotal strategy for mitigating congestion. Coordinating signal control across multiple intersections involves considerable complexity. Deep Reinforcement Learning (DRL) has emerged as a robust solution. In recent years, there has been rapid advancement in TSC methods, with numerous researchers employing various novel DRL methodologies. Yet, existing surveys lack timeliness and universality in capturing the latest research. There is a notable gap in current research surveys with respect to the latest developments in TSC. Therefore, the focus of this paper lies in analyzing the most recent papers from the past five years, with the aim to provide a comprehensive and multi -dimensional review of the evolution of DRL in TSC. The survey categorizes current research based on model setups, utilized algorithms, and application scenarios. Finally, this paper highlights potential directions for future TSC research.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A Survey on Deep Reinforcement Learning for Traffic Signal Control
    Miao, Wei
    Li, Long
    Wang, Zhiwen
    [J]. PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 1092 - 1097
  • [2] A Deep Reinforcement Learning Approach to Traffic Signal Control
    Razack, Aquib Junaid
    Ajith, Vysyakh
    Gupta, Rajiv
    [J]. 2021 IEEE CONFERENCE ON TECHNOLOGIES FOR SUSTAINABILITY (SUSTECH2021), 2021,
  • [3] Deep Reinforcement Learning for Traffic Signal Control: A Review
    Rasheed, Faizan
    Yau, Kok-Lim Alvin
    Noor, Rafidah Md.
    Wu, Celimuge
    Low, Yeh-Ching
    [J]. IEEE ACCESS, 2020, 8 : 208016 - 208044
  • [4] Robust Deep Reinforcement Learning for Traffic Signal Control
    Kai Liang Tan
    Anuj Sharma
    Soumik Sarkar
    [J]. Journal of Big Data Analytics in Transportation, 2020, 2 (3): : 263 - 274
  • [5] A Survey on Reinforcement Learning Models and Algorithms for Traffic Signal Control
    Yau, Kok-Lim Alvin
    Qadir, Junaid
    Khoo, Hooi Ling
    Ling, Mee Hong
    Komisarczuk, Peter
    [J]. ACM COMPUTING SURVEYS, 2017, 50 (03)
  • [6] A Regional Traffic Signal Control Strategy with Deep Reinforcement Learning
    Li, Congcong
    Yan, Fei
    Zhou, Yiduo
    Wu, Jia
    Wang, Xiaomin
    [J]. 2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 7690 - 7695
  • [7] Deep Reinforcement Learning-based Traffic Signal Control
    Ruan, Junyun
    Tang, Jinzhuo
    Gao, Ge
    Shi, Tianyu
    Khamis, Alaa
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON SMART MOBILITY, SM, 2023, : 21 - 26
  • [8] A Deep Reinforcement Learning Approach for Fair Traffic Signal Control
    Raeis, Majid
    Leon-Garcia, Alberto
    [J]. 2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 2512 - 2518
  • [9] Optimization Control of Adaptive Traffic Signal with Deep Reinforcement Learning
    Cao, Kerang
    Wang, Liwei
    Zhang, Shuo
    Duan, Lini
    Jiang, Guimin
    Sfarra, Stefano
    Zhang, Hai
    Jung, Hoekyung
    Karray, Mohamed
    [J]. ELECTRONICS, 2024, 13 (01)
  • [10] Traffic signal control method based on deep reinforcement learning
    Liu Z.-M.
    Ye B.-L.
    Zhu Y.-D.
    Yao Q.
    Wu W.-M.
    [J]. Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2022, 56 (06): : 1249 - 1256