Reinforcement Learning with Explainability for Traffic Signal Control

被引:0
|
作者
Rizzo, Stefano Giovanni [1 ]
Vantini, Giovanna [1 ]
Chawla, Sanjay [1 ]
机构
[1] QCRI, Doha, Qatar
关键词
OPTIMIZATION;
D O I
暂无
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
Deep reinforcement learning has recently provided promising results on the traffic light control optimization problem, by training neural network agents to select the traffic light phase. These agents learn complex models by optimizing a simple objective, such as the average traffic speed, but are considered opaque when it comes to explaining their decisions. Nevertheless, explanations are required in transferring this technology in the real world, especially in complex scenarios with nontrivial phases, such as in the case of signalized roundabouts with entry and circulatory traffic lights. In this paper, after training a Policy Gradient agent on a signalized roundabout with 11 phases and real traffic data, we analyze the relation between the agent phase preferences and the actual traffic, and we assess the agent capability of reacting to the current detectors state. Then, we estimate the effect of the road detectors state on the agent selected phases, through the SHAP model-agnostic technique, using Shapley values recovered from a linear explanation model. The results show that it is possible to extract meaningful explanations on the decision taken by a complex policy, in relation to both the traffic volumes and the lanes occupancy.
引用
收藏
页码:3567 / 3572
页数:6
相关论文
共 50 条
  • [1] Parallel Reinforcement Learning for Traffic Signal Control
    Mannion, Patrick
    Duggan, Jim
    Howley, Enda
    [J]. 6TH INTERNATIONAL CONFERENCE ON AMBIENT SYSTEMS, NETWORKS AND TECHNOLOGIES (ANT-2015), THE 5TH INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY INFORMATION TECHNOLOGY (SEIT-2015), 2015, 52 : 956 - 961
  • [2] Reinforcement learning in neurofuzzy traffic signal control
    Bingham, E
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2001, 131 (02) : 232 - 241
  • [3] Traffic Signal Control Using Reinforcement Learning
    Jadhao, Namrata S.
    Jadhao, Ashish S.
    [J]. 2014 FOURTH INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS AND NETWORK TECHNOLOGIES (CSNT), 2014, : 1130 - 1135
  • [4] A Deep Reinforcement Learning Approach to Traffic Signal Control
    Razack, Aquib Junaid
    Ajith, Vysyakh
    Gupta, Rajiv
    [J]. 2021 IEEE CONFERENCE ON TECHNOLOGIES FOR SUSTAINABILITY (SUSTECH2021), 2021,
  • [5] Reinforcement Learning With Function Approximation for Traffic Signal Control
    Prashanth, L. A.
    Bhatnagar, Shalabh
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2011, 12 (02) : 412 - 421
  • [6] Deep Reinforcement Learning for Traffic Signal Control: A Review
    Rasheed, Faizan
    Yau, Kok-Lim Alvin
    Noor, Rafidah Md.
    Wu, Celimuge
    Low, Yeh-Ching
    [J]. IEEE ACCESS, 2020, 8 : 208016 - 208044
  • [7] Robust Deep Reinforcement Learning for Traffic Signal Control
    Kai Liang Tan
    Anuj Sharma
    Soumik Sarkar
    [J]. Journal of Big Data Analytics in Transportation, 2020, 2 (3): : 263 - 274
  • [8] Reinforcement learning for True Adaptive traffic signal control
    Abdulhai, B
    Pringle, R
    Karakoulas, GJ
    [J]. JOURNAL OF TRANSPORTATION ENGINEERING, 2003, 129 (03) : 278 - 285
  • [9] A Survey on Deep Reinforcement Learning for Traffic Signal Control
    Miao, Wei
    Li, Long
    Wang, Zhiwen
    [J]. PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 1092 - 1097
  • [10] A Regional Traffic Signal Control Strategy with Deep Reinforcement Learning
    Li, Congcong
    Yan, Fei
    Zhou, Yiduo
    Wu, Jia
    Wang, Xiaomin
    [J]. 2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 7690 - 7695