Machine-learning-assisted hydrogen adsorption descriptor design for bilayer MXenes

被引:1
|
作者
Tian, Weizhi [1 ]
Ren, Gongchang [1 ]
Wu, Yuanting [2 ]
Lu, Sen [3 ]
Huan, Yuan [1 ]
Peng, Tiren [3 ]
Liu, Peng [1 ]
Sun, Jiangong [1 ]
Su, Hui [4 ]
Cui, Hong [3 ]
机构
[1] Shaanxi Univ Sci & Technol, Coll Mech & Elect Engn, Xian 710021, Shaanxi, Peoples R China
[2] Shaanxi Univ Sci & Technol, Sch Mat Sci & Engn, Shaanxi Key Lab Green Preparat & Functionalizat In, Xian 710021, Shaanxi, Peoples R China
[3] Shaanxi Univ Technol, Shaanxi Key Lab Ind Automat, Hanzhong 723001, Shaanxi, Peoples R China
[4] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Hydrogen storage; Machine learning; Bilayer MXenes; Descriptor; Kubas adsorption; INITIO MOLECULAR-DYNAMICS; STORAGE; CATALYSTS; SURFACE;
D O I
10.1016/j.jclepro.2024.141953
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Currently, most of the MXene hydrogen storage materials with excellent performances are screened by empirical trial -and -error methods. All of them are single -layer materials, and they have difficulty meeting actual demands. Herein, we report the accurate prediction of hydrogen adsorption energies for three adsorption modes inside M1 2 X1 - M2 2 X2 bilayer MXenes using only physical intrinsic features (no density functional theory computational variables). The gradient boosting regression and random forest regression algorithms achieved R 2 of 0.957/0.946 and 0.952/0.935 for chemisorption and physical adsorption models on the training/test set, respectively. In particular, the presence of a nanopump effect mechanism in the MXenes with a small layer spacing ensured that the system had a strong Kubas adsorption of H 2 . Symbolic regression was used to guide the design of hydrogen adsorption descriptors, and two simple descriptors, ( chi / M 1 ) x ( r / M 2 ) 2 and ( r / M 2 ) 3 ( m / X 1 ) , were identified to be applied to chemisorption and physical adsorption, respectively. The results could provide a theoretical basis for the subsequent synthesis of MXene materials with excellent hydrogen storage properties.
引用
下载
收藏
页数:13
相关论文
共 50 条
  • [41] Machine-Learning-Assisted Construction of Ternary Convex Hull Diagrams
    Rossignol, Hugo
    Minotakis, Michail
    Cobelli, Matteo
    Sanvito, Stefano
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (06) : 1828 - 1840
  • [42] Machine-Learning-Assisted Many-Body Entanglement Measurement
    Gray, Johnnie
    Banchi, Leonardo
    Bayat, Abolfazl
    Bose, Sougato
    PHYSICAL REVIEW LETTERS, 2018, 121 (15)
  • [43] On the explainability of machine-learning-assisted turbulence modeling for transonic flows
    He, Xiao
    Tan, Jianheng
    Rigas, Georgios
    Vahdati, Mehdi
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2022, 97
  • [44] Machine-learning-assisted materials discovery using failed experiments
    Raccuglia, Paul
    Elbert, Katherine C.
    Adler, Philip D. F.
    Falk, Casey
    Wenny, Malia B.
    Mollo, Aurelio
    Zeller, Matthias
    Friedler, Sorelle A.
    Schrier, Joshua
    Norquist, Alexander J.
    NATURE, 2016, 533 (7601) : 73 - +
  • [45] Machine-Learning-Assisted Intelligent Imaging Flow Cytometry: A Review
    Luo, Shaobo
    Shi, Yuzhi
    Chin, Lip Ket
    Hutchinson, Paul Edward
    Zhang, Yi
    Chierchia, Giovanni
    Talbot, Hugues
    Jiang, Xudong
    Bourouina, Tarik
    Liu, Ai-Qun
    ADVANCED INTELLIGENT SYSTEMS, 2021, 3 (11)
  • [46] Machine-Learning-Assisted Accurate Band Gap Predictions of Functionalized MXene
    Rajan, Arunkumar Chitteth
    Mishra, Avanish
    Satsangi, Swanti
    Vaish, Rishabh
    Mizuseki, Hiroshi
    Lee, Kwang-Ryeol
    Singh, Abhishek K.
    CHEMISTRY OF MATERIALS, 2018, 30 (12) : 4031 - 4038
  • [47] Machine-learning-assisted prediction of surgical outcomes in patients undergoing gastrectomy
    Sheng Lu
    Min Yan
    Chen Li
    Chao Yan
    Zhenggang Zhu
    Wencong Lu
    Chinese Journal of Cancer Research, 2019, 31 (05) : 797 - 805
  • [48] Machine-learning-assisted Quantitative Analysis in Optical Coherence Tomography Angiography
    Liu, Rongrong
    Mei, Song
    Mao, Zaixing
    Wang, Zhenguo
    Chan, Kinpui
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2020, 61 (07)
  • [49] Machine-Learning-Assisted Descriptors Identification for Indoor Formaldehyde Oxidation Catalysts
    Cao, Xinyuan
    Huang, Jisi
    Du, Kexin
    Tian, Yawen
    Hu, Zhixin
    Luo, Zhu
    Wang, Jinlong
    Guo, Yanbing
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2024, 58 (19) : 8372 - 8379
  • [50] Machine-learning-assisted orbital angular momentum recognition using nanostructures
    Sharma, Chayanika
    Badavath, Purnesh Singh
    Supraja, P.
    Kumar, R. Rakesh
    Kumar, Vijay
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2024, 41 (07) : 1420 - 1425