Machine-learning-assisted hydrogen adsorption descriptor design for bilayer MXenes

被引:1
|
作者
Tian, Weizhi [1 ]
Ren, Gongchang [1 ]
Wu, Yuanting [2 ]
Lu, Sen [3 ]
Huan, Yuan [1 ]
Peng, Tiren [3 ]
Liu, Peng [1 ]
Sun, Jiangong [1 ]
Su, Hui [4 ]
Cui, Hong [3 ]
机构
[1] Shaanxi Univ Sci & Technol, Coll Mech & Elect Engn, Xian 710021, Shaanxi, Peoples R China
[2] Shaanxi Univ Sci & Technol, Sch Mat Sci & Engn, Shaanxi Key Lab Green Preparat & Functionalizat In, Xian 710021, Shaanxi, Peoples R China
[3] Shaanxi Univ Technol, Shaanxi Key Lab Ind Automat, Hanzhong 723001, Shaanxi, Peoples R China
[4] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Hydrogen storage; Machine learning; Bilayer MXenes; Descriptor; Kubas adsorption; INITIO MOLECULAR-DYNAMICS; STORAGE; CATALYSTS; SURFACE;
D O I
10.1016/j.jclepro.2024.141953
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Currently, most of the MXene hydrogen storage materials with excellent performances are screened by empirical trial -and -error methods. All of them are single -layer materials, and they have difficulty meeting actual demands. Herein, we report the accurate prediction of hydrogen adsorption energies for three adsorption modes inside M1 2 X1 - M2 2 X2 bilayer MXenes using only physical intrinsic features (no density functional theory computational variables). The gradient boosting regression and random forest regression algorithms achieved R 2 of 0.957/0.946 and 0.952/0.935 for chemisorption and physical adsorption models on the training/test set, respectively. In particular, the presence of a nanopump effect mechanism in the MXenes with a small layer spacing ensured that the system had a strong Kubas adsorption of H 2 . Symbolic regression was used to guide the design of hydrogen adsorption descriptors, and two simple descriptors, ( chi / M 1 ) x ( r / M 2 ) 2 and ( r / M 2 ) 3 ( m / X 1 ) , were identified to be applied to chemisorption and physical adsorption, respectively. The results could provide a theoretical basis for the subsequent synthesis of MXene materials with excellent hydrogen storage properties.
引用
下载
收藏
页数:13
相关论文
共 50 条
  • [31] Machine-learning-assisted materials discovery using failed experiments
    Paul Raccuglia
    Katherine C. Elbert
    Philip D. F. Adler
    Casey Falk
    Malia B. Wenny
    Aurelio Mollo
    Matthias Zeller
    Sorelle A. Friedler
    Joshua Schrier
    Alexander J. Norquist
    Nature, 2016, 533 : 73 - 76
  • [32] Machine-learning-assisted design of depth-graded multilayer X-ray structure
    Dieb, Thaer M.
    Ishii, Masashi
    PHOTONIC INSTRUMENTATION ENGINEERING VII, 2020, 11287
  • [33] Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm
    Wu, Stephen
    Kondo, Yukiko
    Kakimoto, Masa-aki
    Yang, Bin
    Yamada, Hironao
    Kuwajima, Isao
    Lambard, Guillaume
    Hongo, Kenta
    Xu, Yibin
    Shiomi, Junichiro
    Schick, Christoph
    Morikawa, Junko
    Yoshida, Ryo
    NPJ COMPUTATIONAL MATERIALS, 2019, 5 (1)
  • [34] A Novel Algebraic Stress Model with Machine-Learning-Assisted Parameterization
    Jiang, Chao
    Mi, Junyi
    Laima, Shujin
    Li, Hui
    ENERGIES, 2020, 13 (01)
  • [35] Machine-Learning-Assisted Recognition on Bioinspired Soft Sensor Arrays
    Luo, Yang
    Xiao, Xiao
    Chen, Jun
    Li, Qian
    Fu, Hongyan
    ACS NANO, 2022, 16 (04) : 6734 - 6743
  • [36] Retrospective machine-learning-assisted analysis of the immune infiltrate in osteosarcoma
    Stupnicki, A. D.
    Oyesola, S.
    Ryan, L.
    Butters, T.
    Flanagan, A.
    JOURNAL OF PATHOLOGY, 2024, 264 : S36 - S36
  • [37] Machine-learning-assisted low dielectric constant polymer discovery†
    Liang, Jiechun
    Xu, Shangqian
    Hu, Linfeng
    Zhao, Yu
    Zhu, Xi
    MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (10) : 3823 - 3829
  • [38] Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm
    Stephen Wu
    Yukiko Kondo
    Masa-aki Kakimoto
    Bin Yang
    Hironao Yamada
    Isao Kuwajima
    Guillaume Lambard
    Kenta Hongo
    Yibin Xu
    Junichiro Shiomi
    Christoph Schick
    Junko Morikawa
    Ryo Yoshida
    npj Computational Materials, 5
  • [39] Machine-Learning-Assisted Manipulation and Readout of Molecular Spin Qubits
    Bonizzoni, Claudio
    Tincani, Mirco
    Santanni, Fabio
    Affronte, Marco
    PHYSICAL REVIEW APPLIED, 2022, 18 (06)
  • [40] Machine-learning-assisted Bacteria Identification in AC Nanopore Measurement
    Sakamoto, Maami
    Hori, Kosuke
    Yamamoto, Takatoki
    SENSORS AND MATERIALS, 2023, 35 (09) : 3161 - 3171