Cauchy matrix approach to three non-isospectral nonlinear Schr?dinger equations

被引:0
|
作者
Alemu Yilma Tefera [1 ]
Shangshuai Li [1 ,2 ,3 ]
Da-jun Zhang [1 ,2 ]
机构
[1] Department of Mathematics, Shanghai University
[2] Newtouch Center for Mathematics of Shanghai University
[3] Department of Applied Mathematics, Faculty of Science and Engineering, Waseda University
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
O175.29 [非线性偏微分方程];
学科分类号
摘要
This paper aims to develop a direct approach, namely, the Cauchy matrix approach, to non-isospectral integrable systems. In the Cauchy matrix approach, the Sylvester equation plays a central role, which defines a dressed Cauchy matrix to provide τ functions for the investigated equations. In this paper, using the Cauchy matrix approach, we derive three non-isospectral nonlinear Schr?dinger equations and their explicit solutions. These equations are generically related to the time-dependent spectral parameter in the Zakharov–Shabat–Ablowitz–Kaup–Newell–Segur spectral problem. Their solutions are obtained from the solutions of unreduced non-isospectral nonlinear Schr?dinger equations through complex reduction. These solutions are analyzed and illustrated to show the non-isospectral effects in dynamics of solitons.
引用
收藏
页码:3 / 17
页数:15
相关论文
共 50 条
  • [31] Global solutions of nonlinear Schrödinger equations
    Martin Schechter
    Calculus of Variations and Partial Differential Equations, 2017, 56
  • [32] Choreographies in the discrete nonlinear Schrödinger equations
    Renato Calleja
    Eusebius Doedel
    Carlos García-Azpeitia
    Carlos L. Pando L.
    The European Physical Journal Special Topics, 2018, 227 : 615 - 624
  • [33] On soliton dynamics in nonlinear schrödinger equations
    Zhou Gang
    I. M. Sigal
    Geometric & Functional Analysis GAFA, 2006, 16 : 1377 - 1390
  • [34] Group classification of nonlinear schrödinger equations
    Nikitin A.G.
    Popovych R.O.
    Ukrainian Mathematical Journal, 2001, 53 (8) : 1255 - 1265
  • [35] Remarks on scattering for nonlinear Schrödinger equations
    Kenji Nakanishi
    Tohru Ozawa
    Nonlinear Differential Equations and Applications NoDEA, 2002, 9 : 45 - 68
  • [36] Normalized solutions of nonlinear Schrödinger equations
    Thomas Bartsch
    Sébastien de Valeriola
    Archiv der Mathematik, 2013, 100 : 75 - 83
  • [37] Stochastic nonlinear Schrödinger equations on tori
    Kelvin Cheung
    Razvan Mosincat
    Stochastics and Partial Differential Equations: Analysis and Computations, 2019, 7 : 169 - 208
  • [38] Relativistic Burgers and nonlinear SchrÖdinger equations
    O. K. Pashaev
    Theoretical and Mathematical Physics, 2009, 160 : 1022 - 1030
  • [39] Symmetries of separating nonlinear schrödinger equations
    Svetlichny G.
    Journal of Nonlinear Mathematical Physics, 1997, 4 (1-2) : 28 - 35
  • [40] The Cauchy Problem for the Nonlinear Schrödinger Equation on a Compact Manifold
    Nicolas Burq
    Patrick Gérard
    Nikolay Tzvetkov
    Journal of Nonlinear Mathematical Physics, 2003, 10 (Suppl 1) : 12 - 27