Cauchy matrix approach to three non-isospectral nonlinear Schr?dinger equations

被引:0
|
作者
Alemu Yilma Tefera [1 ]
Shangshuai Li [1 ,2 ,3 ]
Da-jun Zhang [1 ,2 ]
机构
[1] Department of Mathematics, Shanghai University
[2] Newtouch Center for Mathematics of Shanghai University
[3] Department of Applied Mathematics, Faculty of Science and Engineering, Waseda University
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
O175.29 [非线性偏微分方程];
学科分类号
摘要
This paper aims to develop a direct approach, namely, the Cauchy matrix approach, to non-isospectral integrable systems. In the Cauchy matrix approach, the Sylvester equation plays a central role, which defines a dressed Cauchy matrix to provide τ functions for the investigated equations. In this paper, using the Cauchy matrix approach, we derive three non-isospectral nonlinear Schr?dinger equations and their explicit solutions. These equations are generically related to the time-dependent spectral parameter in the Zakharov–Shabat–Ablowitz–Kaup–Newell–Segur spectral problem. Their solutions are obtained from the solutions of unreduced non-isospectral nonlinear Schr?dinger equations through complex reduction. These solutions are analyzed and illustrated to show the non-isospectral effects in dynamics of solitons.
引用
收藏
页码:3 / 17
页数:15
相关论文
共 50 条
  • [21] Strong Symmetries of Non-Isospectral Ablowitz-Ladik Equations
    Wu Hua
    Zhang Da-Jun
    CHINESE PHYSICS LETTERS, 2011, 28 (02)
  • [22] Soliton solutions to the nonlocal non-isospectral nonlinear Schrodinger equation
    Feng, Wei
    Zhao, Song-Lin
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2020, 34 (25):
  • [23] Non-conservative variational approximation for nonlinear Schrödinger equations
    J. Rossi
    R. Carretero-González
    P. G. Kevrekidis
    The European Physical Journal Plus, 135
  • [24] On the periodic Cauchy problem for a coupled system of third-order nonlinear Schrödinger equations
    M. Scialom
    L. M. Bragança
    São Paulo Journal of Mathematical Sciences, 2019, 13 : 475 - 498
  • [25] The Cauchy problem for quasi-linear Schrödinger equations
    Carlos E. Kenig
    Gustavo Ponce
    Luis Vega
    Inventiones mathematicae, 2004, 158 : 343 - 388
  • [26] The Cauchy problem for nonlocal abstract Schrödinger equations and applications
    Veli B. Shakhmurov
    Analysis and Mathematical Physics, 2021, 11
  • [27] A system of nonlinear evolution Schrödinger equations
    Sh. M. Nasibov
    Doklady Mathematics, 2007, 76 : 708 - 712
  • [28] Semiclassical States of Nonlinear Schrödinger Equations
    A. Ambrosetti
    M. Badiale
    S. Cingolani
    Archive for Rational Mechanics and Analysis, 1997, 140 : 285 - 300
  • [29] Lagrangian nonlocal nonlinear Schrödinger equations
    Velasco-Juan, M.
    Fujioka, J.
    Chaos, Solitons and Fractals, 2022, 156
  • [30] Hamiltonian formalism for nonlinear Schr?dinger equations
    Pazarci, Ali
    Turhan, Umut Can
    Ghazanfari, Nader
    Gahramanov, Ilmar
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 121