HERMITE-HADAMARD TYPE INEQUALITIES FOR THE PRODUCT OF (alpha, m)-CONVEX FUNCTIONS

被引:4
|
作者
Yin, Hong-Ping [1 ]
Qi, Feng [2 ]
机构
[1] Inner Mongolia Univ Nationalities, Coll Math, Tongliao City 028043, Inner Mongolia, Peoples R China
[2] Tianjin Polytech Univ, Coll Sci, Dept Math, Tianjin 300160, Peoples R China
关键词
Hermite-Hadamard type inequality; (alpha; m)-convex function; product; Holder's integral inequality;
D O I
10.35834/mjms/1449161369
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper, the authors establish some Hermite-Hadamard type inequalities for the product of two (alpha, m)-convex functions.
引用
收藏
页码:71 / 79
页数:9
相关论文
共 50 条
  • [41] HERMITE-HADAMARD TYPE INTEGRAL INEQUALITIES FOR GENERALIZED CONVEX FUNCTIONS
    Aslani, S. Mohammadi
    Delavar, M. Rostamian
    Vaezpour, S. M.
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2018, 9 (01): : 17 - 33
  • [42] NEW INTEGRAL INEQUALITIES OF HERMITE-HADAMARD TYPE FOR OPERATOR m-CONVEX AND (α, m)-CONVEX FUNCTIONS
    Wang, Shuhong
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 22 (04) : 744 - 753
  • [43] Hermite-Hadamard inequalities for generalized convex functions
    Bessenyei M.
    Páles Z.
    aequationes mathematicae, 2005, 69 (1-2) : 32 - 40
  • [44] Fractional inequalities of the Hermite-Hadamard type for m-polynomial convex and harmonically convex functions
    Nwaeze, Eze R.
    Khan, Muhammad Adil
    Ahmadian, Ali
    Ahmad, Mohammad Nazir
    Mahmood, Ahmad Kamil
    AIMS MATHEMATICS, 2021, 6 (02): : 1889 - 1904
  • [45] Hermite-Hadamard type inequalities for exponential type multiplicatively convex functions
    Ozcana, Serap
    FILOMAT, 2023, 37 (28) : 9777 - 9789
  • [46] Hermite-Hadamard Type Inequalities Obtained via Fractional Integral for Differentiable m-Convex and (alpha,m)-Convex Functions
    Set, Erhan
    Karatas, Suleyman Sami
    Khan, Muhammad Adil
    INTERNATIONAL JOURNAL OF ANALYSIS, 2016,
  • [47] Some Hermite-Hadamard Type Inequalities for (α, m) -Convex Functions on the Co-ordinates
    Akdemir, Ahmet Ocak
    Ozdemir, M. Emin
    INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES: ICANAS 2016, 2016, 1726
  • [48] Some Inequalities of Hermite-Hadamard Type for Functions Whose Third Derivatives Are (α, m)-Convex
    Shuang, Ye
    Wang, Yan
    Qi, Feng
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2014, 17 (02) : 272 - 279
  • [49] Some inequalities of Hermite-Hadamard type for functions whose second derivatives are (α, m)-convex
    Shuang, Ye
    Qi, Feng
    Wang, Yan
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (01): : 139 - 148
  • [50] NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR (α,m)-CONVEX FUNCTIONS AND APPLICATIONS TO SPECIAL MEANS
    Sun, Wenbing
    Liu, Qiong
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2017, 11 (02): : 383 - 397