HERMITE-HADAMARD TYPE INEQUALITIES FOR THE PRODUCT OF (alpha, m)-CONVEX FUNCTIONS

被引:4
|
作者
Yin, Hong-Ping [1 ]
Qi, Feng [2 ]
机构
[1] Inner Mongolia Univ Nationalities, Coll Math, Tongliao City 028043, Inner Mongolia, Peoples R China
[2] Tianjin Polytech Univ, Coll Sci, Dept Math, Tianjin 300160, Peoples R China
关键词
Hermite-Hadamard type inequality; (alpha; m)-convex function; product; Holder's integral inequality;
D O I
10.35834/mjms/1449161369
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper, the authors establish some Hermite-Hadamard type inequalities for the product of two (alpha, m)-convex functions.
引用
收藏
页码:71 / 79
页数:9
相关论文
共 50 条
  • [31] Refinements of Hermite-Hadamard type inequalities for operator convex functions
    Vildan Bacak
    Ramazan Türkmen
    Journal of Inequalities and Applications, 2013 (1)
  • [32] New inequalities of hermite-hadamard type for convex functions with applications
    Kavurmaci, Havva
    Avci, Merve
    Ozdemir, M. Emin
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011,
  • [33] Fejer and Hermite-Hadamard Type Inequalities for Harmonically Convex Functions
    Chen, Feixiang
    Wu, Shanhe
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [34] ON HERMITE-HADAMARD TYPE INEQUALITIES FOR F-CONVEX FUNCTIONS
    Adamek, Miroslaw
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (03): : 867 - 874
  • [35] Hermite-Hadamard type inequalities for operator geometrically convex functions
    Taghavi, A.
    Darvish, V.
    Nazari, H. M.
    Dragomir, S. S.
    MONATSHEFTE FUR MATHEMATIK, 2016, 181 (01): : 187 - 203
  • [36] EXPONENTIAL TRIGONOMETRIC CONVEX FUNCTIONS AND HERMITE-HADAMARD TYPE INEQUALITIES
    Kadakal, Mahir
    Iscan, Imdat
    Agarwal, Praveen
    Jleli, Mohamed
    MATHEMATICA SLOVACA, 2021, 71 (01) : 43 - 56
  • [37] Hermite-Hadamard Type Inequalities and Convex Functions in Signal Processing
    Sun, Wenfeng
    He, Xiaowei
    IEEE ACCESS, 2024, 12 : 92906 - 92918
  • [38] Hermite-Hadamard's type inequalities for operator convex functions
    Dragomir, S. S.
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (03) : 766 - 772
  • [39] Generalizations of Hermite-Hadamard Type Integral Inequalities for Convex Functions
    Wu, Ying
    Yin, Hong-Ping
    Guo, Bai-Ni
    AXIOMS, 2021, 10 (03)
  • [40] New discrete inequalities of Hermite-Hadamard type for convex functions
    Mohammed, Pshtiwan Othman
    Abdeljawad, Thabet
    Alqudah, Manar A.
    Jarad, Fahd
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)